1. Decompose the trapezoid to find its area.



### **SOLUTION:**

The trapezoid is decomposed into a rectangle and a triangle.



Find the area of each shape.

Rectangle:

$$A = \ell w$$

$$= 9(10)$$

$$= 90$$

Triangle:

$$A = \frac{1}{2}bh$$

$$= \frac{1}{2}(3)(10)$$

$$= 15$$

The total area is 90 + 15 or 105 cm<sup>2</sup>.

2. Decompose the trapezoid to find its area.



### **SOLUTION:**

The trapezoid is decomposed into a square and two congruent triangles.



Find the area of each shape.

Square:

$$A = \ell w$$

$$= 7(7)$$

$$= 49$$

Triangle 1 and Triangle 2:

$$A = \frac{1}{2}bh$$
$$= \frac{1}{2}(2)(7)$$
$$= 7$$

The total area is 49 + 7 + 7 or 63 ft<sup>2</sup>.

3. Find the area of the trapezoid.



**SOLUTION:** 

$$A = \frac{1}{2}h(b_1 + b_2)$$
 Area of a trapezoid 
$$A = \frac{1}{2}(6)(5+7)$$
 Replace  $h$ ,  $b_1$ , and  $b_2$  with the known values.

$$A = \frac{1}{2}(6)(12)$$
 Add.

$$A = 36$$
 Multiply.

The area is  $36 \text{ in}^2$ .

4. Find the area of the trapezoid.



7 cm

**SOLUTION:** 

$$A = \frac{1}{2}h(b_1 + b_2)$$
 Area of a trapezoid 
$$A = \frac{1}{2}(12)(7+4)$$
 Replace  $h, b_1$ , and  $b_2$  with the known values.

$$A = \frac{1}{2}(12)(11)$$
 Add.

$$A = 66$$
 Multiply.

The area is  $66 \text{ cm}^2$ .

5. The shape of Arkansas resembles a trapezoid. What is the approximate area of Arkansas?



**SOLUTION:** 

$$A = \frac{1}{2}h(b_1 + b_2)$$

Area of a trapezoid

$$A = \frac{1}{2}(400)(300 + 475)$$

Replace h,  $b_1$ , and  $b_2$  with the known values.

$$A = \frac{1}{2}(400)(775)$$

Add.

$$A = 155,000$$

Multiply.

The area is  $155,000 \text{ km}^2$ .

6. The top of the desk shown is in the shape of a trapezoid. What is the area of the top of the desk?



**SOLUTION:** 

$$A = \frac{1}{2}h(b_1 + b_2)$$

Area of a trapezoid

$$A = \frac{1}{2}(24)(18 + 36)$$

Replace h,  $b_1$ , and  $b_2$  with the known values.

$$A = \frac{1}{2}(24)(54)$$

Add.

$$A = 648$$

Multiply.

The area is  $648 \text{ in}^2$ .

7. Find the missing dimension of the trapezoid.



**SOLUTION:** 

$$A = \frac{1}{2}h(b_1 + b_2)$$

Area of a trapezoid

$$40 = \frac{1}{2}h(12+8)$$

Replace A,  $b_1$ , and  $b_2$  with the known values.

$$40 = \frac{1}{2}h(20)$$

Add.

$$40 = h10$$

Multiply.

$$4 = h$$

Divide each side by 10.

The height is 4 inches.

8. Open Response Ciro made a sign in the shape of a trapezoid. What was the area of Ciro's sign?



**SOLUTION:** 

$$A = \frac{1}{2}h(b_1 + b_2)$$

Area of a trapezoid

$$A = \frac{1}{2}(2)(3+1.5)$$

Replace h,  $b_1$ , and  $b_2$  with the known values.

$$A = \frac{1}{2}(2)(4.5)$$

Add.

$$A = 4.5$$

Multiply.

The area is  $4.5 \text{ ft}^2$ .

9. Greta has budgeted \$1,500 to have a concrete patio poured in her backyard like the one shown. The cost per square foot of the cement is \$5.50. Find the cost of the patio to determine if Greta has budgeted enough money to complete the project.



#### **SOLUTION:**

The patio is composed of a rectangle and a trapezoid.

Find the area of each shape.

Rectangle:

$$A = \ell w$$

$$= 28(6)$$

$$= 168$$

Trapezoid:

$$A = \frac{1}{2}h(b_1 + b_2)$$
 Area of a trapezoid  

$$= \frac{1}{2}(9)(8 + 13)$$
 Replace  $h$ ,  $b_1$ , and  $b_2$  with the known values.  

$$= \frac{1}{2}(9)(21)$$
 Add.  

$$= 94.5$$
 Multiply.

The total area is 168 + 94.5 or 262.5 square feet.

The cost of the patio is  $262.5 \times $5.50$  or \$1,443.75. Because this is less than \$1,500, Greta has budgeted enough money.

10. Create Draw and label a trapezoid that has no right angles and an area greater than 75 square meters.

#### **SOLUTION:**

Sample answer:



$$A = \frac{1}{2}h(b_1 + b_2)$$
 Area of a trapezoid  

$$= \frac{1}{2}(9)(10 + 15)$$
 Replace  $h$ ,  $b_1$ , and  $b_2$  with the known values.  

$$= \frac{1}{2}(9)(25)$$
 Add.  

$$= 112.5$$
 Multiply.

The area of the trapezoid is  $112.5 \text{ m}^2$ .

11. Explain the steps needed to rewrite the formula for the area of a trapezoid to find  $b_2$ .

#### **SOLUTION:**

Start with the area formula: 
$$A = \frac{1}{2}h(b_1 + b_2)$$

Multiply each side by 2: 
$$2A = h(b_1 + b_2)$$

Multiply each side by 
$$\frac{1}{h}$$
:  $\frac{2A}{h} = b_1 + b_2$ 

Subtract 
$$b_1$$
 from each side:  $\frac{2A}{h} - b_1 = b_2$ 

12. Create Write and solve a real-world problem where you need to find the area of a trapezoid.

#### **SOLUTION:**

A tray in a school cafeteria has the dimensions shown. Find the area of the tray.



$$A = \frac{1}{2}(16)(16 + 24)$$
 Area of a trapezoid  
=  $\frac{1}{2}(16)(40)$  Add.  
= 320 in<sup>2</sup> Multiply.

13. **Reason Inductively** The area of a trapezoid is 48 square centimeters. The height is 6 centimeters and one base is 3 times the length of the other base. What are the lengths of the bases?

### **SOLUTION:**

Sample method:

$$A = \frac{1}{2}bh$$
 Area of a trapezoid  
 $48 = \frac{1}{2}(6)(b+3b)$  Replace the known values.

$$48 = \frac{1}{2}(6)(4b)$$
 Add.

$$48 = 12b$$
 Multiply.  $4 = b$  Divide.

The base is 4 cm and the other base is 3(4) or 12 cm.