
1Preliminaries of Calculus

In this chapter, we present a collection of familiar topics, primarily those that we con-
sider essential for the study of calculus. While we do not intend this chapter to be a 
comprehensive review of precalculus mathematics, we have tried to hit the highlights 
and provide you with some standard notation and language that we will use throughout 
the text.

As it grows, a chambered nautilus creates a spiral shell. Behind this beautiful 
geometry is a surprising amount of mathematics. The nautilus grows in such a way that 
the overall proportions of its shell remain constant. That is, if you draw a rectangle to 
circumscribe the shell, the ratio of height to width of the rectangle remains nearly 
constant.

There are several ways to represent this property mathematically. In polar coordi-
nates, we study logarithmic spirals that have the property that the angle of growth is 
constant, corresponding to the constant proportions of a nautilus shell. Using basic 
geometry, you can divide the circumscribing rectangle into a sequence of squares as in 
the figure. The relative sizes of the squares form the famous Fibonacci sequence 1, 1, 2, 3, 
5, 8, . . . , where each number in the sequence is the sum of the preceding two numbers. So
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The Fibonacci sequence has an amazing list of interesting properties. (Search on 
the Internet to see what we mean!) Numbers in the sequence have a surprising habit of 
showing up in nature, such as the number of petals on a lily (3), buttercup (5), marigold 
(13), and pyrethrum (34). Although we have a very simple description of how to generate 
the Fibonacci sequence, think about how you might describe it as a function. A plot of  
the first several numbers in the sequence (shown in Figure 1.1 on the following page) 
should give you the impression of a graph curving up, perhaps a parabola or an exponen-
tial curve.

Two aspects of this problem are important themes 
throughout the calculus. One of these is the importance 
of looking for patterns to help us better describe the 
world. A second theme is the interplay between graphs 
and functions. By connecting the techniques of algebra 
with the visual images provided by graphs, you will 
significantly improve your ability to solve real-world 
problems mathematically.

In this chapter, we present a collection of familiar topics, primarily
those that we consider essential for the study of calculus. While we do
not intend this chapter to be a comprehensive review of precalculus
mathematics, we have tried to hit the highlights and provide you with
some standard notation and language that we will use throughout
the text.

As itgrows,achamberednautiluscreatesaspiral shell.Behindthis
beautiful geometry is a surprising amount of mathematics. The nau-
tilus grows in such a way that the overall proportions of its shell remain
constant. That is, if you draw a rectangle to circumscribe the shell, the
ratio of height to width of the rectangle remains nearly constant.

There are several ways to represent this property mathematically.
In  polar  coordinates, we study logarithmic spirals that  have the
property that the angle of  growth is constant, corresponding to the

constant proportions of a nautilus shell. Using basic  geometry, you can
divide the circumscribing rectangle into a sequence of squares as in the
figure. The relative sizes of the squares form the famous  Fibonacci
sequence 1, 1, 2, 3, 5, 8, . . . , where each number in the sequence is the sum
of the preceding two numbers.
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A nautilus shell

The Fibonacci sequence has an amazing list of interesting properties.
(Search on the Internet to see what we mean!) Numbers in the sequence have
a surprising habit of showing up in nature, such as the number of petals on
a lily (3), buttercup (5), marigold (13), and pyrethrum (34). Although we
have a very simple description of how to generate the Fibonacci sequence,
think about how you might describe it as a function. A plot of the first
several numbers in the sequence (shown in Figure 1.1 on the following page)
should give you the impression of a graph curving up, perhaps a parabola or
an exponential curve.

Two aspects of this problem are im-
portant themes throughout the calculus.
One of these is the importance of looking
for patterns to help us better describe the
world. A second theme is the interplay be-
tween graphs and functions. By connect-
ing the techniques of algebra with the visual
images provided by graphs, you will signif-
icantly improve your ability to solve real-
world problems mathematically.
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FIGURE 1.1
The Fibonacci sequence

POLYNOMIALS AND RATIONAL FUNCTIONS

The Real Number System and Inequalities
Our journey into calculus begins with the real number system, focusing on those prop-
erties that are of particular interest for calculus.

The set of integers consists of the whole numbers and their additive inverses:
0, ±1,±2,±3, . . . . A rational number is any number of the form

p
q , where p and q

are integers and q ≠ 0. For example, 2
3

,− 7
3

and 27
125

are all rational numbers. Notice
that every integer n is also a rational number, since we can write it as the quotient of
two integers: n = n

1
.

The irrational numbers are all those real numbers that cannot be written in the
form

p
q , where p and q are integers. Recall that rational numbers have decimal ex-

pansions that either terminate or repeat. For instance, 1
2
= 0.5, 1

3
= 0.33333̄, 1

8
= 0.125

and 1
6
= 0.166666̄ are all rational numbers. By contrast, irrational numbers have deci-

mal expansions that do not repeat or terminate. For instance, three familiar irrational
numbers and their decimal expansions are

√
2 = 1.41421 35623. . . ,

𝜋𝜋 = 3.14159 26535. . .
and e = 2.71828 18284. . . .

We picture the real numbers arranged along the number line displayed in Figure 1.2
(the real line). The set of real numbers is denoted by the symbol ℝ.

0 54321-1-2-3-4-5

- √2      √3 π

e

FIGURE 1.2
The real line

1.1

        3



C
op

yr
ig

ht
 ©

 M
cG

ra
w

-H
ill

 E
du

ca
ti

on
 

4 

1 -1Polynomials and Rational Functions

P1: NAI/NAI P2: NAI/NAI QC: NAI/NAI T1: NAI

UAE_Math_Grade_12_Vol_1_SE_718383_ch0 GO01962-Smith-v1.cls July 4, 2016 13:26

1 2 3 4 5 6 7 8
x

y

5

10

15

20

25

30

35

 0

FIGURE 1.1
The Fibonacci sequence

POLYNOMIALS AND RATIONAL FUNCTIONS

The Real Number System and Inequalities
Our journey into calculus begins with the real number system, focusing on those prop-
erties that are of particular interest for calculus.

The set of integers consists of the whole numbers and their additive inverses:
0, ±1,±2,±3, . . . . A rational number is any number of the form

p
q , where p and q

are integers and q ≠ 0. For example, 2
3

,− 7
3

and 27
125

are all rational numbers. Notice
that every integer n is also a rational number, since we can write it as the quotient of
two integers: n = n

1
.

The irrational numbers are all those real numbers that cannot be written in the
form

p
q , where p and q are integers. Recall that rational numbers have decimal ex-

pansions that either terminate or repeat. For instance, 1
2
= 0.5, 1

3
= 0.33333̄, 1

8
= 0.125

and 1
6
= 0.166666̄ are all rational numbers. By contrast, irrational numbers have deci-

mal expansions that do not repeat or terminate. For instance, three familiar irrational
numbers and their decimal expansions are

√
2 = 1.41421 35623. . . ,

𝜋𝜋 = 3.14159 26535. . .
and e = 2.71828 18284. . . .

We picture the real numbers arranged along the number line displayed in Figure 1.2
(the real line). The set of real numbers is denoted by the symbol ℝ.

0 54321-1-2-3-4-5

- √2      √3 π

e

FIGURE 1.2
The real line

1.1

P1: NAI/NAI P2: NAI/NAI QC: NAI/NAI T1: NAI

UAE_Math_Grade_12_Vol_1_SE_718383_ch0 GO01962-Smith-v1.cls July 4, 2016 13:26

For real numbers a and b, where a < b, we define the closed interval [a, b] to be the
set of numbers between a and b, including a and b (the endpoints). That is,

[a, b] = {x ∈ ℝ ∣ a ≤ x ≤ b},

as illustrated in Figure 1.3, where the solid circles indicate that a and b are included in
[a, b].

a b

FIGURE 1.3
A closed interval

a b

FIGURE 1.4
An open interval

Similarly, the open interval (a, b) is the set of numbers between a and b, but not
including the endpoints a and b, that is,

(a, b) = {x ∈ ℝ ∣ a < x < b},

as illustrated in Figure 1.4, where the open circles indicate that a and b are not included
in (a, b). Similarly, we denote the set {x ∈ ℝ ∣ x > a} by the interval notation (a, ∞) and
{x ∈ ℝ ∣ x < a} by (−∞, a). In both of these cases, it is important to recognize that ∞
and −∞ are not real numbers and we are using this notation as a convenience.

You should already be very familiar with the following properties of real numbers.

THEOREM 1.1
If a and b are real numbers and a < b, then

(i) For any real number c, a + c < b + c.
(ii) For real numbers c and d, if c < d, then a + c < b + d.

(iii) For any real number c > 0, a ⋅ c < b ⋅ c.
(iv) For any real number c < 0, a ⋅ c > b ⋅ c.

REMARK 1.1

We need the properties given in Theorem 1.1 to solve inequalities. Notice that
(i) says that you can add the same quantity to both sides of an inequality. Part (iii)
says that you can multiply both sides of an inequality by a positive number.
Finally, (iv) says that if you multiply both sides of an inequality by a negative
number, the inequality is reversed.

We illustrate the use of Theorem 1.1 by solving a simple inequality.

EXAMPLE 1.1 Solving a Linear Inequality

Solve the linear inequality 2x + 5 < 13.

Solution We can use the properties in Theorem 1.1 to solve for x. Subtracting 5 from
both sides, we obtain

(2x + 5) − 5 < 13 − 5

or 2x < 8.
Dividing both sides by 2, we obtain

x < 4.
We often write the solution of an inequality in interval notation. In this case, we get
the interval (−∞, 4).

You can deal with more complicated inequalities in the same way.

4 | Lesson 1-1 | Polynomials and Rational Functions
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says that you can multiply both sides of an inequality by a positive number.
Finally, (iv) says that if you multiply both sides of an inequality by a negative
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Solve the linear inequality 2x + 5 < 13.
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both sides, we obtain
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EXAMPLE 1.2 Solving a Two-Sided Inequality

Solve the two-sided inequality 6 < 1 − 3x ≤ 10.

Solution First, recognize that this problem requires that we find values of x
such that

6 < 1 − 3x and 1 − 3x ≤ 10.

It is most efficient to work with both inequalities simultaneously. First, subtract 1
from each term, to get

6 − 1 < (1 − 3x) − 1 ≤ 10 − 1

or 5 < −3x ≤ 9.

Now, divide by −3, but be careful. Since −3 < 0, the inequalities are reversed.
We have

5
−3

> −3x
−3

> 9
−3

or −5
3
> x ≥ −3.

We usually write this as −3 ≤ x < −5
3

,

or in interval notation as [−3,− 5
3

).

y

42-2-4

-8

-4

4

8

x
1

FIGURE 1.5

y = x − 1
x + 2

You will often need to solve inequalities involving fractions. We present a typical
example in the following.

EXAMPLE 1.3 Solving an Inequality Involving a Fraction

Solve the inequality x − 1
x + 2

≥ 0.

Solution In Figure 1.5, we show a graph of the function, which appears to indicate
that the solution includes all x < −2 and x ≥ 1. Carefully read the inequality and
observe that there are only three ways to satisfy this: either both numerator and
denominator are positive, both are negative or the numerator is zero. To visualize
this, we draw number lines for each of the individual terms, indicating where each
is positive, negative or zero and use these to draw a third number line indicating
the value of the quotient, as shown in the margin. In the third number line, we have
placed an “× ” above the −2 to indicate that the quotient is undefined at x = −2.
From this last number line, you can see that the quotient is nonnegative whenever
x < −2 or x ≥ 1. We write the solution in interval notation as (−∞,−2) ∪ [1,∞).
Note that this solution is consistent with what we see in Figure 1.5.

For inequalities involving a polynomial of degree 2 or higher, factoring the poly-
nomial and determining where the individual factors are positive and negative, as in
example 1.4, will lead to a solution.

 x - 1
 x + 21

0

-2

+ +-

x - 1
1

0 +-

x + 2
-2

0 +-

×

EXAMPLE 1.4 Solving a Quadratic Inequality

Solve the quadratic inequality

x2 + x − 6 > 0. (1.1)
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Solution In Figure 1.6, we show a graph of the polynomial on the left side of the
inequality. Since this polynomial factors, (1.1) is equivalent to

(x + 3)(x − 2) > 0. (1.2)

This can happen in only two ways: when both factors are positive or when both
factors are negative. As in example 1.3, we draw number lines for both of the
individual factors, indicating where each is positive, negative or zero and use these
to draw a number line representing the product. We show these in the margin.
Notice that the third number line indicates that the product is positive whenever
x < −3 or x > 2. We write this in interval notation as (−∞,−3) ∪ (2,∞).

y

x

-10

10

20

62 4-2-4-6

FIGURE 1.6
y = x2 + x − 6

(x + 3)(x - 2)
2

00

-3

+ +-

x - 2
2

0 +-

x + 3
-3

0 +-

No doubt, you will recall the following standard definition.

DEFINITION 1.1

The absolute value of a real number x is |x| =
{

x, if x ≥ 0.
−x, if x < 0

Make certain that you read Definition 1.1 correctly. If x is negative, then −x is
positive. This says that |x|≥ 0 for all real numbers x. For instance, using the definition,

|−4 | = −(−4) = 4.

Notice that for any real numbers a and b,

|a ⋅ b| = |a| ⋅ |b|,
although

|a + b| ≠ |a| + |b|,

in general. (To verify this, simply take a = 5 and b = −2 and compute both quantities.)
However, it is always true that

|a + b| ≤ |a| + |b|.

NOTES
For any two real numbers a and b,
|a − b| gives the distance between
a and b. (See Figure 1.7.)

This is referred to as the triangle inequality.
The interpretation of |a − b| as the distance between a and b (see the note in the

margin) is particularly useful for solving inequalities involving absolute values. Wher-
ever possible, we suggest that you use this interpretation to read what the inequality
means, rather than merely following a procedure to produce a solution.

a b

|a - b|

FIGURE 1.7
The distance between a and b

EXAMPLE 1.5 Solving an Inequality Containing an Absolute Value

Solve the inequality

|x − 2|< 5. (1.3)

Solution First, take a few moments to read what this inequality says. Since |x − 2|
gives the distance from x to 2, (1.3) says that the distance from x to 2 must be less
than 5. So, find all numbers x whose distance from 2 is less than 5. We indicate the
set of all numbers within a distance 5 of 2 in Figure 1.8. You can now read the
solution directly from the figure: −3 < x < 7 or in interval notation: (−3, 7).

2 - 5 = -3 2 + 5 = 72

5 5

FIGURE 1.8
∣x − 2 ∣< 5

Many inequalities involving absolute values can be solved simply by reading the
inequality correctly, as in example 1.6.

6 | Lesson 1-1 | Polynomials and Rational Functions



C
op

yr
ig

ht
 ©

 M
cG

ra
w

-H
ill

 E
du

ca
ti

on
 

P1: NAI/NAI P2: NAI/NAI QC: NAI/NAI T1: NAI

UAE_Math_Grade_12_Vol_1_SE_718383_ch0 GO01962-Smith-v1.cls July 4, 2016 13:26

EXAMPLE 1.2 Solving a Two-Sided Inequality

Solve the two-sided inequality 6 < 1 − 3x ≤ 10.

Solution First, recognize that this problem requires that we find values of x
such that

6 < 1 − 3x and 1 − 3x ≤ 10.

It is most efficient to work with both inequalities simultaneously. First, subtract 1
from each term, to get

6 − 1 < (1 − 3x) − 1 ≤ 10 − 1

or 5 < −3x ≤ 9.

Now, divide by −3, but be careful. Since −3 < 0, the inequalities are reversed.
We have

5
−3

> −3x
−3

> 9
−3

or −5
3
> x ≥ −3.

We usually write this as −3 ≤ x < −5
3

,

or in interval notation as [−3,− 5
3

).

y

42-2-4

-8

-4

4

8

x
1

FIGURE 1.5

y = x − 1
x + 2

You will often need to solve inequalities involving fractions. We present a typical
example in the following.

EXAMPLE 1.3 Solving an Inequality Involving a Fraction

Solve the inequality x − 1
x + 2

≥ 0.

Solution In Figure 1.5, we show a graph of the function, which appears to indicate
that the solution includes all x < −2 and x ≥ 1. Carefully read the inequality and
observe that there are only three ways to satisfy this: either both numerator and
denominator are positive, both are negative or the numerator is zero. To visualize
this, we draw number lines for each of the individual terms, indicating where each
is positive, negative or zero and use these to draw a third number line indicating
the value of the quotient, as shown in the margin. In the third number line, we have
placed an “× ” above the −2 to indicate that the quotient is undefined at x = −2.
From this last number line, you can see that the quotient is nonnegative whenever
x < −2 or x ≥ 1. We write the solution in interval notation as (−∞,−2) ∪ [1,∞).
Note that this solution is consistent with what we see in Figure 1.5.

For inequalities involving a polynomial of degree 2 or higher, factoring the poly-
nomial and determining where the individual factors are positive and negative, as in
example 1.4, will lead to a solution.

 x - 1
 x + 21

0

-2

+ +-

x - 1
1

0 +-

x + 2
-2

0 +-

×

EXAMPLE 1.4 Solving a Quadratic Inequality
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Solution In Figure 1.6, we show a graph of the polynomial on the left side of the
inequality. Since this polynomial factors, (1.1) is equivalent to

(x + 3)(x − 2) > 0. (1.2)
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than 5. So, find all numbers x whose distance from 2 is less than 5. We indicate the
set of all numbers within a distance 5 of 2 in Figure 1.8. You can now read the
solution directly from the figure: −3 < x < 7 or in interval notation: (−3, 7).

2 - 5 = -3 2 + 5 = 72

5 5

FIGURE 1.8
∣x − 2 ∣< 5

Many inequalities involving absolute values can be solved simply by reading the
inequality correctly, as in example 1.6.
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EXAMPLE 1.6 Solving an Inequality with a Sum Inside an Absolute
Value

Solve the inequality

|x + 4|≤ 7. (1.4)

Solution To use our distance interpretation, we must first rewrite (1.4) as

|x − (−4)|≤ 7.

This now says that the distance from x to −4 is less than or equal to 7. We illustrate
the solution in Figure 1.9, from which it follows that −11 ≤ x ≤ 3 or [−11, 3].

-4 - 7 = -11 -4 + 7 = 3-4

7 7

FIGURE 1.9
∣x + 4 ∣≤ 7

Recall that for any real number r > 0, |x|< r is equivalent to the following inequal-
ity not involving absolute values:

−r < x < r.

In example 1.7, we use this to revisit the inequality from example 1.5.

EXAMPLE 1.7 An Alternative Method for Solving Inequalities

Solve the inequality |x − 2|< 5.

Solution This is equivalent to the two-sided inequality

−5 < x − 2 < 5.

Adding 2 to each term, we get the solution

−3 < x < 7,

or in interval notation (−3, 7), as before.

Recall that the distance between two points (x1, y1) and (x2, y2) is a simple conse-
quence of the Pythagorean Theorem and is given by

d {(x1, y1), (x2, y2)} =
√

(x2 − x1)2 + (y2 − y1)2.

We illustrate this in Figure 1.10.

y

x
x2x1

y2

y1

|y2 - y1|

|x2 - x1|

Distance

(x1, y1)

(x2, y2)

FIGURE 1.10
Distance

EXAMPLE 1.8 Using the Distance Formula

Find the distance between the points (1, 2) and (3, 4).

Solution The distance between (1, 2) and (3, 4) is

d{(1, 2), (3, 4)} =
√

(3 − 1)2 + (4 − 2)2 =
√

4 + 4 =
√

8.

Equations of Lines
The federal government conducts a nationwide census every 10 years to determine the
population. Population data for several recent decades are shown in the accompanying
table.

Year U.S. Population
1960 179,323,175
1970 203,302,031
1980 226,542,203
1990 248,709,873

x y

0 179

10 203

20 227

30 249

Transformed data

One difficulty with analyzing these data is that the numbers are so large. This prob-
lem is remedied by transforming the data. We can simplify the year data by defining
x to be the number of years since 1960, so that 1960 corresponds to x = 0, 1970 cor-
responds to x = 10 and so on. The population data can be simplified by rounding the
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numbers to the nearest million. The transformed data are shown in the accompanying
table and a scatter plot of these data points is shown in Figure 1.11.

The points in Figure 1.11 may appear to form a straight line. (Use a ruler and see if
you agree.) To determine whether the points are, in fact, on the same line (such points
are called colinear), we might consider the population growth in each of the indicated
decades. From 1960 to 1970, the growth was 24 million. (That is, to move from the
first point to the second, you increase x by 10 and increase y by 24.) Likewise, from
1970 to 1980, the growth was 24 million. However, from 1980 to 1990, the growth was
only 22 million. Since the rate of growth is not constant, the data points do not fall on
a line. This argument involves the familiar concept of slope.

y

x

50

100

150

200

250

10 20 30

FIGURE 1.11
Population data DEFINITION 1.2

For x1 ≠ x2, the slope of the straight line through the points (x1, y1) and (x2, y2) is
the number

m =
y2 − y1

x2 − x1
. (1.5)

When x1 = x2 and y1 ≠ y2, the line through (x1, y1) and (x2, y2) is vertical and the
slope is undefined.

We often describe slope as “the change in y divided by the change in x,” written
Δy
Δx

, or more simply as Rise
Run

. (See Figure 1.12a.)

Referring to Figure 1.12b (where the line has positive slope), notice that for any four
points A, B, D and E on the line, the two right triangles ΔABC and ΔDEF are similar.
Recall that for similar triangles, the ratios of corresponding sides must be the same. In
this case, this says that

Δy
Δx

=
Δy ′

Δx ′

x

Δx = x2 - x1

= Run

Δy = y2 - y1

(x1, y1)

(x2, y2)

= Rise

y2

y1

x2x1

y

y

x

Δx′

Δx

Δy

B

E

A

D
F

C

Δy′

FIGURE 1.12a
Slope

FIGURE 1.12b
Similar triangles and slope

and so, the slope is the same no matter which two points on the line are selected. Notice
that a line is horizontal if and only if its slope is zero.

8 | Lesson 1-1 | Polynomials and Rational Functions
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EXAMPLE 1.6 Solving an Inequality with a Sum Inside an Absolute
Value

Solve the inequality

|x + 4|≤ 7. (1.4)

Solution To use our distance interpretation, we must first rewrite (1.4) as

|x − (−4)|≤ 7.

This now says that the distance from x to −4 is less than or equal to 7. We illustrate
the solution in Figure 1.9, from which it follows that −11 ≤ x ≤ 3 or [−11, 3].

-4 - 7 = -11 -4 + 7 = 3-4

7 7

FIGURE 1.9
∣x + 4 ∣≤ 7

Recall that for any real number r > 0, |x|< r is equivalent to the following inequal-
ity not involving absolute values:

−r < x < r.

In example 1.7, we use this to revisit the inequality from example 1.5.

EXAMPLE 1.7 An Alternative Method for Solving Inequalities

Solve the inequality |x − 2|< 5.

Solution This is equivalent to the two-sided inequality

−5 < x − 2 < 5.

Adding 2 to each term, we get the solution

−3 < x < 7,

or in interval notation (−3, 7), as before.

Recall that the distance between two points (x1, y1) and (x2, y2) is a simple conse-
quence of the Pythagorean Theorem and is given by

d {(x1, y1), (x2, y2)} =
√

(x2 − x1)2 + (y2 − y1)2.

We illustrate this in Figure 1.10.

y

x
x2x1

y2

y1

|y2 - y1|

|x2 - x1|

Distance

(x1, y1)

(x2, y2)

FIGURE 1.10
Distance

EXAMPLE 1.8 Using the Distance Formula

Find the distance between the points (1, 2) and (3, 4).

Solution The distance between (1, 2) and (3, 4) is

d{(1, 2), (3, 4)} =
√

(3 − 1)2 + (4 − 2)2 =
√

4 + 4 =
√

8.

Equations of Lines
The federal government conducts a nationwide census every 10 years to determine the
population. Population data for several recent decades are shown in the accompanying
table.

Year U.S. Population
1960 179,323,175
1970 203,302,031
1980 226,542,203
1990 248,709,873

x y

0 179

10 203

20 227

30 249

Transformed data

One difficulty with analyzing these data is that the numbers are so large. This prob-
lem is remedied by transforming the data. We can simplify the year data by defining
x to be the number of years since 1960, so that 1960 corresponds to x = 0, 1970 cor-
responds to x = 10 and so on. The population data can be simplified by rounding the
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numbers to the nearest million. The transformed data are shown in the accompanying
table and a scatter plot of these data points is shown in Figure 1.11.

The points in Figure 1.11 may appear to form a straight line. (Use a ruler and see if
you agree.) To determine whether the points are, in fact, on the same line (such points
are called colinear), we might consider the population growth in each of the indicated
decades. From 1960 to 1970, the growth was 24 million. (That is, to move from the
first point to the second, you increase x by 10 and increase y by 24.) Likewise, from
1970 to 1980, the growth was 24 million. However, from 1980 to 1990, the growth was
only 22 million. Since the rate of growth is not constant, the data points do not fall on
a line. This argument involves the familiar concept of slope.

y

x

50

100

150

200

250

10 20 30

FIGURE 1.11
Population data DEFINITION 1.2

For x1 ≠ x2, the slope of the straight line through the points (x1, y1) and (x2, y2) is
the number

m =
y2 − y1

x2 − x1
. (1.5)

When x1 = x2 and y1 ≠ y2, the line through (x1, y1) and (x2, y2) is vertical and the
slope is undefined.

We often describe slope as “the change in y divided by the change in x,” written
Δy
Δx

, or more simply as Rise
Run

. (See Figure 1.12a.)

Referring to Figure 1.12b (where the line has positive slope), notice that for any four
points A, B, D and E on the line, the two right triangles ΔABC and ΔDEF are similar.
Recall that for similar triangles, the ratios of corresponding sides must be the same. In
this case, this says that

Δy
Δx

=
Δy ′

Δx ′

x

Δx = x2 - x1

= Run

Δy = y2 - y1

(x1, y1)

(x2, y2)

= Rise

y2

y1

x2x1

y

y

x

Δx′

Δx

Δy

B

E

A

D
F

C

Δy′

FIGURE 1.12a
Slope

FIGURE 1.12b
Similar triangles and slope

and so, the slope is the same no matter which two points on the line are selected. Notice
that a line is horizontal if and only if its slope is zero.
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EXAMPLE 1.9 Finding the Slope of a Line

Find the slope of the line through the points (4, 3) and (2, 5).

Solution From (1.5), we get

m =
y2 − y1

x2 − x1
= 5 − 3

2 − 4
= 2

−2
= −1.

EXAMPLE 1.10 Using Slope to Determine if Points Are Colinear

Use slope to determine whether the points (1, 2), (3, 10) and (4, 14) are colinear.

Solution First, notice that the slope of the line joining (1, 2) and (3, 10) is

m1 =
y2 − y1

x2 − x1
= 10 − 2

3 − 1
= 8

2
= 4.

Similarly, the slope through the line joining (3, 10) and (4, 14) is

m2 =
y2 − y1

x2 − x1
= 14 − 10

4 − 3
= 4.

Since the slopes are the same, the points must be colinear.

Recall that if you know the slope and a point through which the line must pass,
you have enough information to graph the line. The easiest way to graph a line is to
plot two points and then draw the line through them. In this case, you need only to
find a second point.

EXAMPLE 1.11 Graphing a Line

If a line passes through the point (2, 1) with slope 2
3

, find a second point on the line
and then graph the line.

Solution Since slope is given by m =
y2 − y1

x2 − x1
, we take m = 2

3
, y1 = 1 and x1 = 2,

to obtain

2
3
=

y2 − 1
x2 − 2

.

You are free to choose the x-coordinate of the second point. For instance, to find the
point at x2 = 5, substitute this in and solve. From

2
3
=

y2 − 1
5 − 2

=
y2 − 1

3
,

we get 2 = y2 − 1 or y2 = 3. A second point is then (5, 3). The graph of the line is
shown in Figure 1.13a. An alternative method for finding a second point is to use
the slope

m = 2
3
=

Δy
Δx

.

The slope of 2
3

says that if we move three units to the right, we must move two units
up to stay on the line, as illustrated in Figure 1.13b.

y

x

-1

1

2

3

4

1 5432

FIGURE 1.13a
Graph of straight line

y

x

-1

1

2

3

4

1 5432

Δx = 3

Δ
y 

=
 2

FIGURE 1.13b
Using slope to find a second point

In example 1.11, the choice of x = 5 was entirely arbitrary; you can choose any
x-value you want to find a second point. Further, since x can be any real number, you can
leave x as a variable and write out an equation satisfied by any point (x, y) on the line.
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In the general case of the line through the point (x0, y0) with slope m, we have from
(1.5) that

m =
y − y0

x − x0
. (1.6)

Multiplying both sides of (1.6) by (x − x0), we get

y − y0 = m(x − x0)

or

POINT-SLOPE FORM OF A LINE
y = m(x − x0) + y0. (1.7)

Equation (1.7) is called the point-slope form of the line.

EXAMPLE 1.12 Finding the Equation of a Line Given Two Points

Find an equation of the line through the points (3, 1) and (4, −1), and graph the line.

Solution From (1.5), the slope is m = −1 − 1
4 − 3

= −2
1

= −2. Using (1.7) with slope

m = −2, x-coordinate x0 = 3 and y-coordinate y0 = 1, we get the equation of the line:

y = −2(x − 3) + 1. (1.8)

To graph the line, plot the points (3, 1) and (4,−1), and you can easily draw the line
seen in Figure 1.14.

y

x

-1

1

2

3

4

5

6

7

1 2 3 4

FIGURE 1.14
y = −2(x − 3) + 1

Although the point-slope form of the equation is often the most convenient to
work with, the slope-intercept form is sometimes more convenient. This has the
form

y = mx + b,

where m is the slope and b is the y-intercept (i.e., the place where the graph crosses the
y-axis). In example 1.12, you simply multiply out (1.8) to get y = −2x + 6 + 1 or

y = −2x + 7.

As you can see from Figure 1.14, the graph crosses the y-axis at y = 7.
Theorem 1.2 presents a familiar result on parallel and perpendicular lines.

THEOREM 1.2
Two (nonvertical) lines are parallel if they have the same slope. Further, any two
vertical lines are parallel. Two (nonvertical) lines of slope m1 and m2 are
perpendicular whenever the product of their slopes is −1 (i.e., m1 ⋅ m2 = −1).
Also, any vertical line and any horizontal line are perpendicular.

Since we can read the slope from the equation of a line, it’s a simple matter
to determine when two lines are parallel or perpendicular. We illustrate this in
examples 1.13 and 1.14.

10 | Lesson 1-1 | Polynomials and Rational Functions
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EXAMPLE 1.9 Finding the Slope of a Line

Find the slope of the line through the points (4, 3) and (2, 5).

Solution From (1.5), we get

m =
y2 − y1

x2 − x1
= 5 − 3

2 − 4
= 2

−2
= −1.

EXAMPLE 1.10 Using Slope to Determine if Points Are Colinear

Use slope to determine whether the points (1, 2), (3, 10) and (4, 14) are colinear.

Solution First, notice that the slope of the line joining (1, 2) and (3, 10) is

m1 =
y2 − y1

x2 − x1
= 10 − 2

3 − 1
= 8

2
= 4.

Similarly, the slope through the line joining (3, 10) and (4, 14) is

m2 =
y2 − y1

x2 − x1
= 14 − 10

4 − 3
= 4.

Since the slopes are the same, the points must be colinear.

Recall that if you know the slope and a point through which the line must pass,
you have enough information to graph the line. The easiest way to graph a line is to
plot two points and then draw the line through them. In this case, you need only to
find a second point.

EXAMPLE 1.11 Graphing a Line

If a line passes through the point (2, 1) with slope 2
3

, find a second point on the line
and then graph the line.

Solution Since slope is given by m =
y2 − y1

x2 − x1
, we take m = 2

3
, y1 = 1 and x1 = 2,

to obtain

2
3
=

y2 − 1
x2 − 2

.

You are free to choose the x-coordinate of the second point. For instance, to find the
point at x2 = 5, substitute this in and solve. From

2
3
=

y2 − 1
5 − 2

=
y2 − 1

3
,

we get 2 = y2 − 1 or y2 = 3. A second point is then (5, 3). The graph of the line is
shown in Figure 1.13a. An alternative method for finding a second point is to use
the slope

m = 2
3
=

Δy
Δx

.

The slope of 2
3

says that if we move three units to the right, we must move two units
up to stay on the line, as illustrated in Figure 1.13b.
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FIGURE 1.13a
Graph of straight line
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FIGURE 1.13b
Using slope to find a second point

In example 1.11, the choice of x = 5 was entirely arbitrary; you can choose any
x-value you want to find a second point. Further, since x can be any real number, you can
leave x as a variable and write out an equation satisfied by any point (x, y) on the line.
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In the general case of the line through the point (x0, y0) with slope m, we have from
(1.5) that

m =
y − y0

x − x0
. (1.6)

Multiplying both sides of (1.6) by (x − x0), we get

y − y0 = m(x − x0)

or

POINT-SLOPE FORM OF A LINE
y = m(x − x0) + y0. (1.7)

Equation (1.7) is called the point-slope form of the line.

EXAMPLE 1.12 Finding the Equation of a Line Given Two Points

Find an equation of the line through the points (3, 1) and (4, −1), and graph the line.

Solution From (1.5), the slope is m = −1 − 1
4 − 3

= −2
1

= −2. Using (1.7) with slope

m = −2, x-coordinate x0 = 3 and y-coordinate y0 = 1, we get the equation of the line:

y = −2(x − 3) + 1. (1.8)

To graph the line, plot the points (3, 1) and (4,−1), and you can easily draw the line
seen in Figure 1.14.

y

x

-1

1
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3

4
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1 2 3 4

FIGURE 1.14
y = −2(x − 3) + 1

Although the point-slope form of the equation is often the most convenient to
work with, the slope-intercept form is sometimes more convenient. This has the
form

y = mx + b,

where m is the slope and b is the y-intercept (i.e., the place where the graph crosses the
y-axis). In example 1.12, you simply multiply out (1.8) to get y = −2x + 6 + 1 or

y = −2x + 7.

As you can see from Figure 1.14, the graph crosses the y-axis at y = 7.
Theorem 1.2 presents a familiar result on parallel and perpendicular lines.

THEOREM 1.2
Two (nonvertical) lines are parallel if they have the same slope. Further, any two
vertical lines are parallel. Two (nonvertical) lines of slope m1 and m2 are
perpendicular whenever the product of their slopes is −1 (i.e., m1 ⋅ m2 = −1).
Also, any vertical line and any horizontal line are perpendicular.

Since we can read the slope from the equation of a line, it’s a simple matter
to determine when two lines are parallel or perpendicular. We illustrate this in
examples 1.13 and 1.14.
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EXAMPLE 1.13 Finding the Equation of a Parallel Line

Find an equation of the line parallel to y = 3x − 2 and through the point (−1, 3).

Solution It’s easy to read the slope of the line from the equation: m = 3. The
equation of the parallel line is then

y = 3[x − (−1)] + 3

or simply y = 3x + 6. We show a graph of both lines in Figure 1.15.

y

x

-10

-20

10

20

42-2-4

FIGURE 1.15
Parallel lines

EXAMPLE 1.14 Finding the Equation of a Perpendicular Line

Find an equation of the line perpendicular to y = −2x + 4 and intersecting the line
at the point (1, 2).

Solution The slope of y = −2x + 4 is −2. The slope of the perpendicular line is
then −1∕(−2) = 1

2
. Since the line must pass through the point (1, 2), the equation of

the perpendicular line is

y = 1
2

(x − 1) + 2 or y = 1
2

x + 3
2
.

We show a graph of the two lines in Figure 1.16.

y

x

-4

-2

2

4

2 4-2

FIGURE 1.16
Perpendicular lines

We now return to this subsection’s introductory example and use the equation of
a line to estimate the population in the year 2000.

EXAMPLE 1.15 Using a Line to Predict Population

From the population data for the census years 1960, 1970, 1980 and 1990 given in
example 1.8, predict the population for the year 2000.

Solution We began this subsection by showing that the points in the
corresponding table are not colinear. Nonetheless, they are nearly colinear. So, why
not use the straight line connecting the last two points (20, 227) and (30, 249)
(corresponding to the populations in the years 1980 and 1990) to predict the
population in 2000? (This is a simple example of a more general procedure called
extrapolation.) The slope of the line joining the two data points is

m = 249 − 227
30 − 20

= 22
10

= 11
5
.

The equation of the line is then

y = 11
5

(x − 30) + 249.

y

x
5040302010

100

200

300

FIGURE 1.17
Population

See Figure 1.17 for a graph of the line. If we follow this line to the point
corresponding to x = 40 (the year 2000), we have the predicted population

11
5

(40 − 30) + 249 = 271.

That is, the predicted population is 271 million people. The actual census figure for
2000 was 281 million, which indicates that the U.S. population grew at a faster rate
between 1990 and 2000 than in the previous decade.

Functions
For any two subsets A and B of the real line, we make the following familiar definition.
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DEFINITION 1.3
A function f is a rule that assigns exactly one element y in a set B to each element
x in a set A. In this case, we write y = f (x).

We call the set A the domain of f . The set of all values f (x) in B is called the
range of f , written {y ∣ y = f (x), for some x ∈ A}. Unless explicitly stated
otherwise, whenever a function f is given by a particular expression, the domain
of f is the largest set of real numbers for which the expression is defined. We
refer to x as the independent variable and to y as the dependent variable.

f

x

BA

y

REMARK 1.2

Functions can be defined by
simple formulas, such as
f (x) = 3x + 2, but in general,
any correspondence meeting
the requirement of matching
exactly one y to each x defines
a function.

By the graph of a function f, we mean the graph of the equation y = f (x). That
is, the graph consists of all points (x, y), where x is in the domain of f and where
y = f (x).

Notice that not every curve is the graph of a function, since for a function, only one
y-value can correspond to a given value of x. You can graphically determine whether
a curve is the graph of a function by using the vertical line test: if any vertical line
intersects the graph in more than one point, the curve is not the graph of a function,
since in this case, there are two y-values for a given value of x.

EXAMPLE 1.16 Using the Vertical Line Test

Determine which of the curves in Figures 1.18a and 1.18b correspond to functions.

y

x
1-1

y

x
0.5 21

-1

1

FIGURE 1.18a FIGURE 1.18b

Solution Notice that the circle in Figure 1.18a is not the graph of a function, since
a vertical line at x = 0.5 intersects the circle twice. (See Figure 1.19a.) The graph in
Figure 1.18b is the graph of a function, even though it swings up and down
repeatedly. Although horizontal lines intersect the graph repeatedly, vertical lines,
such as the one at x = 1.2, intersect only once. (See Figure 1.19b.)

Thefunctionswithwhichyouareprobablymostfamiliararepolynomials.Thesearethe
simplest functions to work with because they are defined entirely in terms of arithmetic.

y

x
10.5-1

FIGURE 1.19a
Curve fails vertical line test

y

x
0.5 21

-1

1

FIGURE 1.19b
Curve passes vertical line test

DEFINITION 1.4
A polynomial is any function that can be written in the form

f (x) = anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0,

where a0, a1, a2, ..., an are real numbers (the coefficients of the polynomial) with
an ≠ 0 and n ≥ 0 is an integer (the degree of the polynomial).

12 | Lesson 1-1 | Polynomials and Rational Functions
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EXAMPLE 1.13 Finding the Equation of a Parallel Line

Find an equation of the line parallel to y = 3x − 2 and through the point (−1, 3).

Solution It’s easy to read the slope of the line from the equation: m = 3. The
equation of the parallel line is then

y = 3[x − (−1)] + 3

or simply y = 3x + 6. We show a graph of both lines in Figure 1.15.

y

x

-10

-20

10

20

42-2-4

FIGURE 1.15
Parallel lines

EXAMPLE 1.14 Finding the Equation of a Perpendicular Line

Find an equation of the line perpendicular to y = −2x + 4 and intersecting the line
at the point (1, 2).

Solution The slope of y = −2x + 4 is −2. The slope of the perpendicular line is
then −1∕(−2) = 1

2
. Since the line must pass through the point (1, 2), the equation of

the perpendicular line is

y = 1
2

(x − 1) + 2 or y = 1
2

x + 3
2
.

We show a graph of the two lines in Figure 1.16.

y

x

-4

-2

2

4

2 4-2

FIGURE 1.16
Perpendicular lines

We now return to this subsection’s introductory example and use the equation of
a line to estimate the population in the year 2000.

EXAMPLE 1.15 Using a Line to Predict Population

From the population data for the census years 1960, 1970, 1980 and 1990 given in
example 1.8, predict the population for the year 2000.

Solution We began this subsection by showing that the points in the
corresponding table are not colinear. Nonetheless, they are nearly colinear. So, why
not use the straight line connecting the last two points (20, 227) and (30, 249)
(corresponding to the populations in the years 1980 and 1990) to predict the
population in 2000? (This is a simple example of a more general procedure called
extrapolation.) The slope of the line joining the two data points is

m = 249 − 227
30 − 20

= 22
10

= 11
5
.

The equation of the line is then

y = 11
5

(x − 30) + 249.

y

x
5040302010

100

200

300

FIGURE 1.17
Population

See Figure 1.17 for a graph of the line. If we follow this line to the point
corresponding to x = 40 (the year 2000), we have the predicted population

11
5

(40 − 30) + 249 = 271.

That is, the predicted population is 271 million people. The actual census figure for
2000 was 281 million, which indicates that the U.S. population grew at a faster rate
between 1990 and 2000 than in the previous decade.

Functions
For any two subsets A and B of the real line, we make the following familiar definition.
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DEFINITION 1.3
A function f is a rule that assigns exactly one element y in a set B to each element
x in a set A. In this case, we write y = f (x).

We call the set A the domain of f . The set of all values f (x) in B is called the
range of f , written {y ∣ y = f (x), for some x ∈ A}. Unless explicitly stated
otherwise, whenever a function f is given by a particular expression, the domain
of f is the largest set of real numbers for which the expression is defined. We
refer to x as the independent variable and to y as the dependent variable.

f

x

BA

y

REMARK 1.2

Functions can be defined by
simple formulas, such as
f (x) = 3x + 2, but in general,
any correspondence meeting
the requirement of matching
exactly one y to each x defines
a function.

By the graph of a function f, we mean the graph of the equation y = f (x). That
is, the graph consists of all points (x, y), where x is in the domain of f and where
y = f (x).

Notice that not every curve is the graph of a function, since for a function, only one
y-value can correspond to a given value of x. You can graphically determine whether
a curve is the graph of a function by using the vertical line test: if any vertical line
intersects the graph in more than one point, the curve is not the graph of a function,
since in this case, there are two y-values for a given value of x.

EXAMPLE 1.16 Using the Vertical Line Test

Determine which of the curves in Figures 1.18a and 1.18b correspond to functions.

y

x
1-1

y

x
0.5 21

-1

1

FIGURE 1.18a FIGURE 1.18b

Solution Notice that the circle in Figure 1.18a is not the graph of a function, since
a vertical line at x = 0.5 intersects the circle twice. (See Figure 1.19a.) The graph in
Figure 1.18b is the graph of a function, even though it swings up and down
repeatedly. Although horizontal lines intersect the graph repeatedly, vertical lines,
such as the one at x = 1.2, intersect only once. (See Figure 1.19b.)

Thefunctionswithwhichyouareprobablymostfamiliararepolynomials.Thesearethe
simplest functions to work with because they are defined entirely in terms of arithmetic.

y

x
10.5-1

FIGURE 1.19a
Curve fails vertical line test

y

x
0.5 21

-1

1

FIGURE 1.19b
Curve passes vertical line test

DEFINITION 1.4
A polynomial is any function that can be written in the form

f (x) = anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0,

where a0, a1, a2, ..., an are real numbers (the coefficients of the polynomial) with
an ≠ 0 and n ≥ 0 is an integer (the degree of the polynomial).
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Note that every polynomial function can be defined for all x’s on the entire real
line. Further, recognize that the graph of the linear (degree 1) polynomial f (x) = ax + b
is a straight line.

EXAMPLE 1.17 Sample Polynomials

The following are all examples of polynomials:

f (x) = 2 (polynomial of degree 0 or constant),

f (x) = 3x + 2 (polynomial of degree 1 or linear polynomial),

f (x) = 5x2 − 2x + 2∕3 (polynomial of degree 2 or quadratic polynomial),

f (x) = x3 − 2x + 1 (polynomial of degree 3 or cubic polynomial),

f (x) = −6x4 + 12x2 − 3x + 13 (polynomial of degree 4 or quartic polynomial),

and

f (x) = 2x5 + 6x4 − 8x2 + x− 3 (polynomial of degree 5 or quintic polynomial).

We show graphs of these six functions in Figures 1.20a–1.20f.

y

x

1
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y

x
42-2-4

-15

-10

-5

5

10

15
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x
642-2-4-6

40

80

120

FIGURE 1.20a
f (x) = 2

FIGURE 1.20b
f (x) = 3x + 2

FIGURE 1.20c
f (x) = 5x2 − 2x + 2∕3

y

x
321-1-2-3
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y

x
21-1-2

-20

-10
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20 y

x
1-3 -2 -1

-10

10

20

FIGURE 1.20d
f (x) = x3 − 2x + 1

FIGURE 1.20e
f (x) = −6x4 + 12x2 − 3x + 13

FIGURE 1.20f
f (x) = 2x5 + 6x4 − 8x2 + x − 3
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DEFINITION 1.5
Any function that can be written in the form

f (x) =
p(x)
q(x)

,

where p and q are polynomials, is called a rational function.

Notice that since p(x) and q(x) are polynomials, they can both be defined for all x,

and so, the rational function f (x) =
p(x)
q(x)

can be defined for all x for which q(x) ≠ 0.

EXAMPLE 1.18 A Sample Rational Function

Find the domain of the function

f (x) = x2 + 7x − 11
x2 − 4

.

Solution Here, f (x) is a rational function. We show a graph in Figure 1.21. Its do-
main consists of those values of x for which the denominator is nonzero. Notice that

x2 − 4 = (x − 2)(x + 2)

and so, the denominator is zero if and only if x = ±2. This says that the domain of f is

{x ∈ ℝ ∣x ≠ ±2} = (−∞,−2) ∪ (−2, 2) ∪ (2,∞).

y

x
1 3-1-3

-10

-5

5

10

FIGURE 1.21

f (x) = x2 + 7x − 11
x2 − 4 The square root function is defined in the usual way. When we write y =

√
x, we

mean that y is that number for which y2 = x and y ≥ 0. In particular,
√

4 = 2. Be careful
not to write erroneous statements such as

√
4 = ±2. In particular, be careful to write

√
x2 = |x|.

Since
√

x2 is asking for the nonnegative number whose square is x2, we are looking for
|x| and not x. We can say

√
x2 = x, only for x ≥ 0.

Similarly, for any integer n ≥ 2, y = n
√

x whenever yn = x, where for n even, x ≥ 0 and
y ≥ 0.

EXAMPLE 1.19 Finding the Domain of a Function Involving
a Square Root or a Cube Root

Find the domains of f (x) =
√

x2 − 4 and g(x) = 3
√

x2 − 4.

Solution Since even roots are defined only for nonnegative values, f (x) is defined
only for x2 − 4 ≥ 0. Notice that this is equivalent to having x2 ≥ 4, which occurs
when x ≥ 2 or x ≤ −2. The domain of f is then (−∞,−2] ∪ [2,∞). On the other
hand, odd roots are defined for both positive and negative values. Consequently,
the domain of g is the entire real line, (−∞,∞).

We often find it useful to label intercepts and other significant points on a graph.
Finding these points typically involves solving equations. A solution of the equation
f (x) = 0 is called a zero of the function f or a root of the equation f (x) = 0. Notice that
a zero of the function f corresponds to an x-intercept of the graph of y = f (x).

14 | Lesson 1-1 | Polynomials and Rational Functions
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Note that every polynomial function can be defined for all x’s on the entire real
line. Further, recognize that the graph of the linear (degree 1) polynomial f (x) = ax + b
is a straight line.

EXAMPLE 1.17 Sample Polynomials

The following are all examples of polynomials:

f (x) = 2 (polynomial of degree 0 or constant),

f (x) = 3x + 2 (polynomial of degree 1 or linear polynomial),

f (x) = 5x2 − 2x + 2∕3 (polynomial of degree 2 or quadratic polynomial),

f (x) = x3 − 2x + 1 (polynomial of degree 3 or cubic polynomial),

f (x) = −6x4 + 12x2 − 3x + 13 (polynomial of degree 4 or quartic polynomial),

and

f (x) = 2x5 + 6x4 − 8x2 + x− 3 (polynomial of degree 5 or quintic polynomial).

We show graphs of these six functions in Figures 1.20a–1.20f.
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FIGURE 1.20a
f (x) = 2

FIGURE 1.20b
f (x) = 3x + 2

FIGURE 1.20c
f (x) = 5x2 − 2x + 2∕3
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FIGURE 1.20d
f (x) = x3 − 2x + 1

FIGURE 1.20e
f (x) = −6x4 + 12x2 − 3x + 13

FIGURE 1.20f
f (x) = 2x5 + 6x4 − 8x2 + x − 3
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DEFINITION 1.5
Any function that can be written in the form

f (x) =
p(x)
q(x)

,

where p and q are polynomials, is called a rational function.

Notice that since p(x) and q(x) are polynomials, they can both be defined for all x,

and so, the rational function f (x) =
p(x)
q(x)

can be defined for all x for which q(x) ≠ 0.

EXAMPLE 1.18 A Sample Rational Function

Find the domain of the function

f (x) = x2 + 7x − 11
x2 − 4

.

Solution Here, f (x) is a rational function. We show a graph in Figure 1.21. Its do-
main consists of those values of x for which the denominator is nonzero. Notice that

x2 − 4 = (x − 2)(x + 2)

and so, the denominator is zero if and only if x = ±2. This says that the domain of f is

{x ∈ ℝ ∣x ≠ ±2} = (−∞,−2) ∪ (−2, 2) ∪ (2,∞).

y

x
1 3-1-3

-10

-5

5

10

FIGURE 1.21

f (x) = x2 + 7x − 11
x2 − 4 The square root function is defined in the usual way. When we write y =

√
x, we

mean that y is that number for which y2 = x and y ≥ 0. In particular,
√

4 = 2. Be careful
not to write erroneous statements such as

√
4 = ±2. In particular, be careful to write

√
x2 = |x|.

Since
√

x2 is asking for the nonnegative number whose square is x2, we are looking for
|x| and not x. We can say

√
x2 = x, only for x ≥ 0.

Similarly, for any integer n ≥ 2, y = n
√

x whenever yn = x, where for n even, x ≥ 0 and
y ≥ 0.

EXAMPLE 1.19 Finding the Domain of a Function Involving
a Square Root or a Cube Root

Find the domains of f (x) =
√

x2 − 4 and g(x) = 3
√

x2 − 4.

Solution Since even roots are defined only for nonnegative values, f (x) is defined
only for x2 − 4 ≥ 0. Notice that this is equivalent to having x2 ≥ 4, which occurs
when x ≥ 2 or x ≤ −2. The domain of f is then (−∞,−2] ∪ [2,∞). On the other
hand, odd roots are defined for both positive and negative values. Consequently,
the domain of g is the entire real line, (−∞,∞).

We often find it useful to label intercepts and other significant points on a graph.
Finding these points typically involves solving equations. A solution of the equation
f (x) = 0 is called a zero of the function f or a root of the equation f (x) = 0. Notice that
a zero of the function f corresponds to an x-intercept of the graph of y = f (x).
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EXAMPLE 1.20 Finding Zeros by Factoring

Find all x- and y-intercepts of f (x) = x2 − 4x + 3.

Solution To find the y-intercept, set x = 0 to obtain

y = 0 − 0 + 3 = 3.

To find the x-intercepts, solve the equation f (x) = 0. In this case, we can factor to get

f (x) = x2 − 4x + 3 = (x − 1)(x − 3) = 0.

You can now read off the zeros: x = 1 and x = 3, as indicated in Figure 1.22.

y

x

2

4

6

8

10

321 4 6-2

FIGURE 1.22
y = x2 − 4x + 3

Unfortunately, factoring is not always so easy. Of course, for the quadratic equation

ax2 + bx + c = 0

(for a ≠ 0), the solution(s) are given by the familiar quadratic formula:

x = −b ±
√

b2 − 4ac
2a

.

EXAMPLE 1.21 Finding Zeros Using the Quadratic Formula

Find the zeros of f (x) = x2 − 5x − 12.

Solution You probably won’t have much luck trying to factor this. However, from
the quadratic formula, we have

x =
−(−5) ±

√
(−5)2 − 4 ⋅ 1 ⋅ (−12)

2 ⋅ 1
=

5 ±
√

25 + 48
2

=
5 ±

√
73

2
.

So, the two solutions are given by x = 5
2
+

√
73
2

≈ 6.772 and x = 5
2
−

√
73
2

≈ −1.772.
(No wonder you couldn’t factor the polynomial!)

Finding zeros of polynomials of degree higher than 2 and other functions is usually
trickier and is sometimes impossible. At the least, you can always find an approxima-
tion of any zero(s) by using a graph to zoom in closer to the point(s) where the graph
crosses the x-axis, as we’ll illustrate shortly. A more basic question, though, is to deter-
mine how many zeros a given function has. In general, there is no way to answer this
question without the use of calculus. For the case of polynomials, however, Theorem 1.3
(a consequence of the Fundamental Theorem of Algebra) provides a clue.

THEOREM 1.3
A polynomial of degree n has at most n distinct zeros.

Notice that Theorem 1.3 does not say how many zeros a given polynomial has, but
rather, that the maximum number of distinct (i.e., different) zeros is the same as the
degree. A polynomial of degree n may have anywhere from 0 to n distinct real zeros.
However, polynomials of odd degree must have at least one real zero. For instance,
for the case of a cubic polynomial, we have one of the three possibilities illustrated in
Figures 1.23a, 1.23b and 1.23c. These are the graphs of the functions.

REMARK 1.3

Polynomials may also have
complex zeros. For instance,
f (x) = x2 + 1 has only the
complex zeros x = ±i, where i
is the imaginary number
defined by i =

√
−1. We

confine our attention in this
text to real zeros.

f (x) = x3 − 2x2 + 3 = (x + 1)(x2 − 3x + 3),

g(x) = x3 − x2 − x + 1 = (x + 1)(x − 1)2

and h(x) = x3 − 3x2 − x + 3 = (x + 1)(x − 1)(x − 3),
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respectively. Note that you can see from the factored form where the zeros are (and
how many there are).

y

x
x1

y

x
x1 x2

y

x
x1 x2 x3

FIGURE 1.23a
One zero

FIGURE 1.23b
Two zeros

FIGURE 1.23c
Three zeros

Theorem 1.4 provides an important connection between factors and zeros of poly-
nomials.

THEOREM 1.4 (Factor Theorem)
For any polynomial function f, f (a) = 0 if and only if (x − a) is a factor of f (x).

y

x
2 31-1-2

-2

2

4

FIGURE 1.24a
y = x3 − x2 − 2x + 2

-1.41 -1.39

-0.2

0.2

x

FIGURE 1.24b
Zoomed in on zero near

x = −1.4

1.40 1.42

-0.02

-0.04

0.02

x

FIGURE 1.24c
Zoomed in on zero near

x = 1.4

EXAMPLE 1.22 Finding the Zeros of a Cubic Polynomial

Find the zeros of f (x) = x3 − x2 − 2x + 2.

Solution By calculating f (1), you can see that one zero of this function is x = 1, but
how many other zeros are there? A graph of the function (see Figure 1.24a) shows
that there are two other zeros of f , one near x = −1.5 and one near x = 1.5. You can
find these zeros more precisely by using your graphing calculator or computer
algebra system to zoom in on the locations of these zeros (as shown in Figures

of f are near x = 1.41 and x = −1.41. You can make these estimates more precise by
zooming in even more closely. Most graphing calculators and computer algebra
systems can also find approximate zeros, using a built-in “solve” program. In
Chapter 3, we present a versatile method (called Newton’s method) for obtaining
accurate approximations to zeros. The only way to find the exact solutions is to
factor the expression (using either long division or synthetic division). Here,
we have

f (x) = x3 − x2 − 2x + 2 = (x − 1)(x2 − 2) = (x − 1)(x −
√

2)(x +
√

2),

from which you can see that the zeros are x = 1, x =
√

2 and x = −
√

2.

Recall that to find the points of intersection of two curves defined by y = f (x) and
y = g(x), we set f (x) = g(x) to find the x-coordinates of any points of intersection.

EXAMPLE 1.23 Finding the Intersections of a Line and a Parabola

Find the points of intersection of the parabola y = x2 − x − 5 and the line y = x + 3.

Solution A sketch of the two curves (see Figure 1.25 on the following page) shows
that there are two intersections, one near x = −2 and the other near x = 4.

1.24b and 1.24c). From these zoomed graphs it is clear that the two remaining zeros

16 | Lesson 1-1 | Polynomials and Rational Functions
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EXAMPLE 1.20 Finding Zeros by Factoring

Find all x- and y-intercepts of f (x) = x2 − 4x + 3.

Solution To find the y-intercept, set x = 0 to obtain

y = 0 − 0 + 3 = 3.

To find the x-intercepts, solve the equation f (x) = 0. In this case, we can factor to get

f (x) = x2 − 4x + 3 = (x − 1)(x − 3) = 0.

You can now read off the zeros: x = 1 and x = 3, as indicated in Figure 1.22.
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FIGURE 1.22
y = x2 − 4x + 3

Unfortunately, factoring is not always so easy. Of course, for the quadratic equation

ax2 + bx + c = 0

(for a ≠ 0), the solution(s) are given by the familiar quadratic formula:

x = −b ±
√

b2 − 4ac
2a

.

EXAMPLE 1.21 Finding Zeros Using the Quadratic Formula

Find the zeros of f (x) = x2 − 5x − 12.

Solution You probably won’t have much luck trying to factor this. However, from
the quadratic formula, we have

x =
−(−5) ±

√
(−5)2 − 4 ⋅ 1 ⋅ (−12)

2 ⋅ 1
=

5 ±
√

25 + 48
2

=
5 ±

√
73

2
.

So, the two solutions are given by x = 5
2
+

√
73
2

≈ 6.772 and x = 5
2
−

√
73
2

≈ −1.772.
(No wonder you couldn’t factor the polynomial!)

Finding zeros of polynomials of degree higher than 2 and other functions is usually
trickier and is sometimes impossible. At the least, you can always find an approxima-
tion of any zero(s) by using a graph to zoom in closer to the point(s) where the graph
crosses the x-axis, as we’ll illustrate shortly. A more basic question, though, is to deter-
mine how many zeros a given function has. In general, there is no way to answer this
question without the use of calculus. For the case of polynomials, however, Theorem 1.3
(a consequence of the Fundamental Theorem of Algebra) provides a clue.

THEOREM 1.3
A polynomial of degree n has at most n distinct zeros.

Notice that Theorem 1.3 does not say how many zeros a given polynomial has, but
rather, that the maximum number of distinct (i.e., different) zeros is the same as the
degree. A polynomial of degree n may have anywhere from 0 to n distinct real zeros.
However, polynomials of odd degree must have at least one real zero. For instance,
for the case of a cubic polynomial, we have one of the three possibilities illustrated in
Figures 1.23a, 1.23b and 1.23c. These are the graphs of the functions.

REMARK 1.3

Polynomials may also have
complex zeros. For instance,
f (x) = x2 + 1 has only the
complex zeros x = ±i, where i
is the imaginary number
defined by i =

√
−1. We

confine our attention in this
text to real zeros.

f (x) = x3 − 2x2 + 3 = (x + 1)(x2 − 3x + 3),

g(x) = x3 − x2 − x + 1 = (x + 1)(x − 1)2

and h(x) = x3 − 3x2 − x + 3 = (x + 1)(x − 1)(x − 3),
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respectively. Note that you can see from the factored form where the zeros are (and
how many there are).

y

x
x1

y

x
x1 x2

y

x
x1 x2 x3

FIGURE 1.23a
One zero

FIGURE 1.23b
Two zeros

FIGURE 1.23c
Three zeros

Theorem 1.4 provides an important connection between factors and zeros of poly-
nomials.

THEOREM 1.4 (Factor Theorem)
For any polynomial function f, f (a) = 0 if and only if (x − a) is a factor of f (x).

y

x
2 31-1-2

-2

2

4

FIGURE 1.24a
y = x3 − x2 − 2x + 2

-1.41 -1.39

-0.2

0.2

x

FIGURE 1.24b
Zoomed in on zero near

x = −1.4

1.40 1.42

-0.02

-0.04

0.02

x

FIGURE 1.24c
Zoomed in on zero near

x = 1.4

EXAMPLE 1.22 Finding the Zeros of a Cubic Polynomial

Find the zeros of f (x) = x3 − x2 − 2x + 2.

Solution By calculating f (1), you can see that one zero of this function is x = 1, but
how many other zeros are there? A graph of the function (see Figure 1.24a) shows
that there are two other zeros of f , one near x = −1.5 and one near x = 1.5. You can
find these zeros more precisely by using your graphing calculator or computer
algebra system to zoom in on the locations of these zeros (as shown in Figures

of f are near x = 1.41 and x = −1.41. You can make these estimates more precise by
zooming in even more closely. Most graphing calculators and computer algebra
systems can also find approximate zeros, using a built-in “solve” program. In
Chapter 3, we present a versatile method (called Newton’s method) for obtaining
accurate approximations to zeros. The only way to find the exact solutions is to
factor the expression (using either long division or synthetic division). Here,
we have

f (x) = x3 − x2 − 2x + 2 = (x − 1)(x2 − 2) = (x − 1)(x −
√

2)(x +
√

2),

from which you can see that the zeros are x = 1, x =
√

2 and x = −
√

2.

Recall that to find the points of intersection of two curves defined by y = f (x) and
y = g(x), we set f (x) = g(x) to find the x-coordinates of any points of intersection.

EXAMPLE 1.23 Finding the Intersections of a Line and a Parabola

Find the points of intersection of the parabola y = x2 − x − 5 and the line y = x + 3.

Solution A sketch of the two curves (see Figure 1.25 on the following page) shows
that there are two intersections, one near x = −2 and the other near x = 4.

1.24b and 1.24c). From these zoomed graphs it is clear that the two remaining zeros
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In exercises 33 and 34, find an equation of the line through the
given points and compute the y-coordinate of the point on the
line corresponding to x = 4.

33. y

x
2 3 4 51

1

2

3

4

5

34. y

x
1-2 -1

1.0

3.0

2.0

............................................................

In exercises 35–38, use the vertical line test to determine
whether the curve is the graph of a function.

35. y

x
2 3-2-3

-10

-5

5

10

36. y

x
42

-2-4

-10

-5

5

10

37. y

x
321-1-2-3

2

4

6

38. y

x
21.510.5

0.5

1

............................................................

In exercises 39–42, identify the given function as polynomial,
rational, both or neither.

39. f (x) = x3 − 4x + 1 40. f (x) = x3 + 4x − 1
x4 − 1

41. f (x) = x2 + 2x − 1
x + 1

42. f (x) =
√

x2 + 1

............................................................

In exercises 43–48, find the domain of the function.

43. f (x) =
√

x + 2 44. f (x) = 3
√

x − 1

45. f (x) =
√

x2 − x − 6
x − 5

46. f (x) =
√

x2 − 4√
9 − x2

47. f (x) = 4
x2 − 1

48. f (x) = 4x
x2 + 2x − 6

............................................................

In exercises 49 and 50, find the indicated function values.

49. f (x) = x2 − x − 1; f (0), f (2), f (−3), f (1∕2)

50. f (x) = 3
x

; f (1), f (10), f (100), f (1∕3)

............................................................

In exercises 51 and 52, a brief description is given of a situation.
For the indicated variable, state a reasonable domain.

51. A new candy bar is to be sold; x = number of candy bars
sold in the first month.

52. A parking deck is to be built on a 200′-by-200′ lot; x =width
of deck (in feet).

............................................................
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To determine these precisely, we set the two functions equal and solve for x:

x2 − x − 5 = x + 3.

Subtracting (x + 3) from both sides leaves us with

0 = x2 − 2x − 8 = (x − 4)(x + 2).

This says that the solutions are exactly x = −2 and x = 4. We compute the
corresponding y-values from the equation of the line y = x + 3 (or the equation of
the parabola). The points of intersection are then (−2, 1) and (4, 7). Notice that these
are consistent with the intersections seen in Figure 1.25.

y

x
4 6-2-4

-10

10

20

FIGURE 1.25
y = x + 3 and y = x2 − x − 5

Unfortunately, you won’t always be able to solve equations exactly, as we did in
examples 1.20–1.23. We explore some options for dealing with more difficult equations
in section 0.2.

EXERCISES

WRITING EXERCISES

1. If the slope of the line passing through points A and B equals
the slope of the line passing through points B and C, explain
why the points A, B and C are colinear.

2. If a graph fails the vertical line test, it is not the graph of a
function. Explain this result in terms of the definition of a
function.

3. You should not automatically write the equation of a line in
slope-intercept form. Compare the following forms of the
same line: y = 2.4(x − 1.8) + 0.4 and y = 2.4x − 3.92. Given
x = 1.8, which equation would you rather use to compute y?
How about if you are given x = 0? For x = 8, is there any ad-
vantage to one equation over the other? Can you quickly
read off the slope from either equation? Explain why
neither form of the equation is “better.”

4. To understand Definition 1.1, you must believe that ∣x ∣ = −x
for negative x’s. Using x = −3 as an example, explain in
words why multiplying x by −1 produces the same result
as taking the absolute value of x.

In exercises 1–10, solve the inequality.

1. 3x + 2 < 8 2. 3 − 2x < 7

3. 1 ≤ 2 − 3x < 6 4. −2 < 2x − 3 ≤ 5

5. x + 2
x − 4

≥ 0 6. 2x + 1
x + 2

< 0

7. x2 + 2x − 3 ≥ 0 8. x2 − 5x − 6 < 0

9. ∣x + 5∣< 2 10. |2x + 1| < 4
............................................................

In exercises 11–14, determine if the points are colinear.

11. (2, 1), (0, 2), (4, 0) 12. (3, 1), (4, 4), (5, 8)

13. (4, 1), (3, 2), (1, 3) 14. (1, 2), (2, 5), (4, 8)
............................................................

In exercises 15–18, find (a) the distance between the points,
(b) the slope of the line through the given points, and (c) an
equation of the line through the points.

15. (1, 2), (3, 6) 16. (1,−2), (−1,−3)

17. (0.3,−1.4), (−1.1,−0.4) 18. (1.2, 2.1), (3.1, 2.4)
............................................................

In exercises 19–22, find a second point on the line with slope
m and point P, graph the line and find an equation of the
line.

19. m = 2, P = (1, 3) 20. m = 0, P = (−1, 1)

21. m = 1.2, P = (2.3, 1.1) 22. m = − 1
4
, P = (−2, 1)

............................................................

In exercises 23–28, determine if the lines are parallel, perpen-
dicular, or neither.

23. y = 3(x − 1) + 2 and y = 3(x + 4) − 1

24. y = 2(x − 3) + 1 and y = 4(x − 3) + 1

25. y = −2(x + 1) − 1 and y = 1
2
(x − 2) + 3

26. y = 2x − 1 and y = −2x + 2

27. y = 3x + 1 and y = − 1
3
x + 2

28. x + 2y = 1 and 2x + 4y = 3
............................................................

In exercises 29–32, find an equation of a line through the given
point and (a) parallel to and (b) perpendicular to the given
line.

29. y = 2(x + 1) − 2 at (2, 1) 30. y = 3(x − 2) + 1 at (0, 3)

31. y = 2x + 1 at (3, 1) 32. y = 1 at (0,−1)
............................................................

1.1

.
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In exercises 33 and 34, find an equation of the line through the
given points and compute the y-coordinate of the point on the
line corresponding to x = 4.

33. y

x
2 3 4 51

1

2

3

4

5

34. y

x
1-2 -1

1.0

3.0

2.0

............................................................

In exercises 35–38, use the vertical line test to determine
whether the curve is the graph of a function.

35. y

x
2 3-2-3

-10

-5

5

10

36. y

x
42

-2-4

-10

-5

5

10

37. y

x
321-1-2-3

2

4

6

38. y

x
21.510.5

0.5

1

............................................................

In exercises 39–42, identify the given function as polynomial,
rational, both or neither.

39. f (x) = x3 − 4x + 1 40. f (x) = x3 + 4x − 1
x4 − 1

41. f (x) = x2 + 2x − 1
x + 1

42. f (x) =
√

x2 + 1

............................................................

In exercises 43–48, find the domain of the function.

43. f (x) =
√

x + 2 44. f (x) = 3
√

x − 1

45. f (x) =
√

x2 − x − 6
x − 5

46. f (x) =
√

x2 − 4√
9 − x2

47. f (x) = 4
x2 − 1

48. f (x) = 4x
x2 + 2x − 6

............................................................

In exercises 49 and 50, find the indicated function values.

49. f (x) = x2 − x − 1; f (0), f (2), f (−3), f (1∕2)

50. f (x) = 3
x

; f (1), f (10), f (100), f (1∕3)

............................................................

In exercises 51 and 52, a brief description is given of a situation.
For the indicated variable, state a reasonable domain.

51. A new candy bar is to be sold; x = number of candy bars
sold in the first month.

52. A parking deck is to be built on a 200′-by-200′ lot; x =width
of deck (in feet).

............................................................
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To determine these precisely, we set the two functions equal and solve for x:

x2 − x − 5 = x + 3.

Subtracting (x + 3) from both sides leaves us with

0 = x2 − 2x − 8 = (x − 4)(x + 2).

This says that the solutions are exactly x = −2 and x = 4. We compute the
corresponding y-values from the equation of the line y = x + 3 (or the equation of
the parabola). The points of intersection are then (−2, 1) and (4, 7). Notice that these
are consistent with the intersections seen in Figure 1.25.

y

x
4 6-2-4

-10

10

20

FIGURE 1.25
y = x + 3 and y = x2 − x − 5

Unfortunately, you won’t always be able to solve equations exactly, as we did in
examples 1.20–1.23. We explore some options for dealing with more difficult equations
in section 0.2.

EXERCISES

WRITING EXERCISES

1. If the slope of the line passing through points A and B equals
the slope of the line passing through points B and C, explain
why the points A, B and C are colinear.

2. If a graph fails the vertical line test, it is not the graph of a
function. Explain this result in terms of the definition of a
function.

3. You should not automatically write the equation of a line in
slope-intercept form. Compare the following forms of the
same line: y = 2.4(x − 1.8) + 0.4 and y = 2.4x − 3.92. Given
x = 1.8, which equation would you rather use to compute y?
How about if you are given x = 0? For x = 8, is there any ad-
vantage to one equation over the other? Can you quickly
read off the slope from either equation? Explain why
neither form of the equation is “better.”

4. To understand Definition 1.1, you must believe that ∣x ∣ = −x
for negative x’s. Using x = −3 as an example, explain in
words why multiplying x by −1 produces the same result
as taking the absolute value of x.

In exercises 1–10, solve the inequality.

1. 3x + 2 < 8 2. 3 − 2x < 7

3. 1 ≤ 2 − 3x < 6 4. −2 < 2x − 3 ≤ 5

5. x + 2
x − 4

≥ 0 6. 2x + 1
x + 2

< 0

7. x2 + 2x − 3 ≥ 0 8. x2 − 5x − 6 < 0

9. ∣x + 5∣< 2 10. |2x + 1| < 4
............................................................

In exercises 11–14, determine if the points are colinear.

11. (2, 1), (0, 2), (4, 0) 12. (3, 1), (4, 4), (5, 8)

13. (4, 1), (3, 2), (1, 3) 14. (1, 2), (2, 5), (4, 8)
............................................................

In exercises 15–18, find (a) the distance between the points,
(b) the slope of the line through the given points, and (c) an
equation of the line through the points.

15. (1, 2), (3, 6) 16. (1,−2), (−1,−3)

17. (0.3,−1.4), (−1.1,−0.4) 18. (1.2, 2.1), (3.1, 2.4)
............................................................

In exercises 19–22, find a second point on the line with slope
m and point P, graph the line and find an equation of the
line.

19. m = 2, P = (1, 3) 20. m = 0, P = (−1, 1)

21. m = 1.2, P = (2.3, 1.1) 22. m = − 1
4
, P = (−2, 1)

............................................................

In exercises 23–28, determine if the lines are parallel, perpen-
dicular, or neither.

23. y = 3(x − 1) + 2 and y = 3(x + 4) − 1

24. y = 2(x − 3) + 1 and y = 4(x − 3) + 1

25. y = −2(x + 1) − 1 and y = 1
2
(x − 2) + 3

26. y = 2x − 1 and y = −2x + 2

27. y = 3x + 1 and y = − 1
3
x + 2

28. x + 2y = 1 and 2x + 4y = 3
............................................................

In exercises 29–32, find an equation of a line through the given
point and (a) parallel to and (b) perpendicular to the given
line.

29. y = 2(x + 1) − 2 at (2, 1) 30. y = 3(x − 2) + 1 at (0, 3)

31. y = 2x + 1 at (3, 1) 32. y = 1 at (0,−1)
............................................................

1.1
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In exercises 53–56, discuss whether you think y would be a
function of x.

53. y = grade you get on an exam, x = number of hours you
study

54. y = probability of getting lung cancer, x = number of
cigarettes smoked per day

55. y = a person’s weight, x = number of minutes exercising
per day

56. y = speed at which an object falls, x = weight of object
............................................................
57. Figure A shows the speed of a bicyclist as a function of time.

For the portions of this graph that are flat, what is hap-
pening to the bicyclist’s speed? What is happening to the
bicyclist’s speed when the graph goes up? down? Identify
the portions of the graph that correspond to the bicyclist
going uphill; downhill.

Speed

Time

FIGURE A
Bicycle speed

58. Figure B shows the population of a small country as a func-
tion of time. During the time period shown, the country ex-
perienced two influxes of immigrants, a war and a plague.
Identify these important events.

Population

Time

FIGURE B
Population

In exercises 59–64, find all intercepts of the given graph.

59. y = x2 − 2x − 8 60. y = x2 + 4x + 4

61. y = x3 − 8 62. y = x3 − 3x2 + 3x − 1

63. y = x2 − 4
x + 1

64. y = 2x − 1
x2 − 4

............................................................

In exercises 65–72, factor and/or use the quadratic formula to
find all zeros of the given function.

65. f (x) = x2 − 4x + 3 66. f (x) = x2 + x − 12

67. f (x) = x2 − 4x + 2 68. f (x) = 2x2 + 4x − 1

69. f (x) = x3 − 3x2 + 2x 70. f (x) = x3 − 2x2 − x + 2

71. f (x) = x6 + x3 − 2 72. f (x) = x3 + x2 − 4x − 4
............................................................
In exercises 73 and 74, find all points of intersection.

73. y = x2 + 2x + 3 and y = x + 5

74. y = x2 + 4x − 2 and y = 2x2 + x − 6

APPLICATIONS

75. The boiling point of water (in degrees Fahrenheit) at ele-
vation h (in thousands of feet above sea level) is given by
B(h) = −1.8h + 212. Find h such that water boils at 98.6◦.
Why would this altitude be dangerous to humans?

76. The spin rate of a golf ball hit with a 9 iron has been
measured at 9100 rpm for a 120-compression ball and at
10,000 rpm for a 60-compression ball. Most golfers use 90-
compression balls. If the spin rate is a linear function of
compression, find the spin rate for a 90-compression ball.
Professional golfers often use 100-compression balls. Esti-
mate the spin rate of a 100-compression ball.

77. The chirping rate of a cricket depends on the temperature.
A species of tree cricket chirps 160 times per minute at 79◦F
and 100 times per minute at 64◦F. Find a linear function re-
lating temperature to chirping rate.

78. When describing how to measure temperature by counting
cricket chirps, most guides suggest that you count the num-
ber of chirps in a 15-second time period. Use exercise 77 to
explain why this is a convenient period of time.

79. A person has played a computer game many times. The
statistics show that she has won 415 times and lost 120
times, and the winning percentage is listed as 78%. How
many times in a row must she win to raise the reported
winning percentage to 80%?

EXPLORATORY EXERCISES

1. Suppose you have a machine that will proportionally en-
large a photograph. For example, it could enlarge a 4 × 6
photograph to 8 × 12 by doubling the width and height.
You could make an 8 × 10 picture by cropping 1 inch off
each side. Explain how you would enlarge a 3 1

2
× 5 picture

to an 8 × 10. A friend returns from vacation with a 3 1
2
× 5

picture showing a fishing boat in the outer 1
4

′′
on the right.

If you use your procedure to make an 8×10 enlargement,
does the boat make the cut?

2. Solve the equation ∣x − 2 ∣ + ∣x − 3 ∣ = 1. (Hint: It’s an
unusual solution, in that it’s more than just a couple of

numbers.) Then, solve the equation
√

x + 3 − 4
√

x − 1 +√
x + 8 − 6

√
x − 1 = 1. (Hint: If you make the correct sub-

stitution,youcanuseyoursolutiontothepreviousequation.)
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20. y

x
2 4-2-4

-4

-2

2

4

21. y

x
2 4-2-4

-4

-2

2

4

22.
y

x
2 4-2-4

-4

-2

2

4

............................................................
In exercises 23–26, assume that f has an inverse, and explain
why the statement is true.

23. If the range of f is all y > 0, then the domain of f−1 is all
x > 0.

24. If the graph of f includes the point (a, b), the graph of f−1

includes the point (b, a).

25. If the graph of f does not intersect the line y = 3, then f−1(x)
is undefined at x = 3.

26. If the doman of f is all real numbers, then the range of f−1

is all real numbers.
............................................................
In exercises 27–36, use a graph to determine whether the func-
tion is one-to-one. If it is, graph the inverse function.

27. f (x) = x3 − 5

28. f (x) = x2 − 3

29. f (x) = x3 + 2x − 1

30. f (x) = x3 − 2x − 1

31. f (x) = x5 − 3x3 − 1

32. f (x) = x5 + 4x3 − 2

33. f (x) = 1
x + 1

34. f (x) = 4
x2 + 1

35. f (x) = x
x + 4

36. f (x) = x√
x2 + 4

............................................................

Exercises 37–46 involve inverse functions on restricted domains.

37. Show that f (x) = x2 (x ≥ 0) and g(x) =
√

x (x ≥ 0) are in-
verse functions. Graph both functions.

38. Show that f (x)= x2 −1 (x ≥ 0) and g(x)=
√

x + 1 (x ≥−1)
are inverse functions. Graph both functions.

39. Graph f (x) = x2 for x ≤ 0 and verify that it is one-to-one.
Find its inverse. Graph both functions.

40. Graph f (x) = x2 + 2 for x ≤ 0 and verify that it is one-to-one.
Find its inverse. Graph both functions.

41. Graph f (x) = (x − 2)2 and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

42. Graph f (x) = (x + 1)4 and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

43. Graph f (x) =
√

x2 − 2x and find an interval on which it is
one-to-one. Find the inverse of the function restricted to
that interval. Graph both functions.

44. Graph f (x) = x
x2 − 4

and find an interval on which it is one-

to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

45. Graph f (x) = sin x and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

46. Graph f (x) = cos x and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

APPLICATIONS

In exercises 47–52, discuss whether the function described has
an inverse.

47. The income of a company varies with time.

48. The height of a person varies with time.

49. For a dropped ball, its height varies with time.
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EXAMPLE 3.7 Evaluating an Inverse Tangent

Evaluate tan−1(1).

Solution You must look for the angle 𝜃𝜃 on the interval
(
− 𝜋𝜋

2
, 𝜋𝜋

2

)
for which tan 𝜃𝜃 = 1.

This is easy enough. Since tan
(𝜋𝜋

4

)
= 1 and 𝜋𝜋

4
∈
(
− 𝜋𝜋

2
, 𝜋𝜋

2

)
, we have that tan−1(1) = 𝜋𝜋

4
.

y

x

-10

-5

-1

5

1

10

π

π

2

FIGURE 1.49
y = sec x on [0,𝜋𝜋]

We now turn to defining an inverse for sec x. First, we must issue a disclaimer.
There are several reasonable ways in which to suitably restrict the domain and differ-
ent authors restrict it differently. We have (somewhat arbitrarily) chosen to restrict the
domain to be

[
0, 𝜋𝜋

2

)
∪
(𝜋𝜋

2
,𝜋𝜋

]
. Why not use all of [0,𝜋𝜋]? You need only think about the

definition of sec x to see why we needed to exclude the value x = 𝜋𝜋
2

. See Figure 1.49 for
a graph of sec x on this domain.

(
Note the vertical asymptote at x = 𝜋𝜋

2
.
)

Consequently,
we define the inverse secant function by

y = sec−1 x if and only if sec y = x and y ∈
[
0, 𝜋𝜋

2

)
∪
(𝜋𝜋

2
,𝜋𝜋

]
.

y

x
1051-5 -1-10

π

π
2

FIGURE 1.50
y = sec−1 x

A graph of sec−1 x is shown in Figure 1.50.

EXAMPLE 3.8 Evaluating an Inverse Secant

Evaluate sec−1(−
√

2).

Solution You must look for the angle 𝜃𝜃 with 𝜃𝜃 ∈
[
0, 𝜋𝜋

2

)
∪
(
𝜋𝜋
2

,𝜋𝜋
]
, for which

sec 𝜃𝜃 = −
√

2. Notice that if sec 𝜃𝜃 = −
√

2, then cos 𝜃𝜃 = − 1√
2
= −

√
2

2
. Since

cos 3𝜋𝜋
4

= −
√

2
2

and the angle 3𝜋𝜋
4

is in the interval
(
𝜋𝜋
2

,𝜋𝜋
]
, we have sec−1(−

√
2) = 3𝜋𝜋

4
.

Calculators do not usually have built-in functions for sec x or sec−1 x. In this case,
you must convert the desired secant value to a cosine value and use the inverse cosine
function, as we did in example 3.8.

Function Domain Range

sin−1 x [−1, 1]
[
− 𝜋𝜋

2
, 𝜋𝜋

2

]

cos−1 x [−1, 1] [0,𝜋𝜋]

tan−1 x (−∞,∞)
(
− 𝜋𝜋

2
, 𝜋𝜋

2

)

REMARK 3.5

We can likewise define
inverses to cot x and csc x. As
these functions are used only
infrequently, we will omit
them here and examine them
in the exercises.

We summarize the domains and ranges of the three main inverse trigonometric
functions in the margin.

In many applications, we need to calculate the length of one side of a right triangle
using the length of another side and an acute angle (i.e., an angle between 0 and 𝜋𝜋

2
radians). We can do this rather easily, as in example 3.9.

EXAMPLE 3.9 Finding the Height of a Tower

A person 100 m from the base of a tower measures an angle of 60◦ from the ground
to the top of the tower. (See Figure 1.51.) (a) Find the height of the tower. (b) What
angle is measured if the person is 200 m from the base?

h

sin θ l

100 m
cos θ

θ

FIGURE 1.51
Height of a tower

Solution For (a), we first convert 60◦ to radians:

60◦ = 60 𝜋𝜋
180

= 𝜋𝜋
3

radians.

We are given that the base of the triangle in Figure 1.51 is 100 m. We must now
compute the height h of the tower. Using the similar triangles indicated in
Figure 1.51, we have

sin 𝜃𝜃
cos 𝜃𝜃

= h
100

,

so that the height of the tower is

h = 100 sin 𝜃𝜃
cos 𝜃𝜃

= 100 tan 𝜃𝜃 = 100 tan 𝜋𝜋
3
= 100

√
3 ≈ 173 m.
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equation solving. Explain how to use sin−1 x to find all solu-
tions of the equation sin u = x.

4. Discuss how to compute sec−1 x, csc−1x and cot−1 x on a cal-
culator that has built-in functions only for sin−1 x, cos−1 x
and tan−1 x.

5. In example 3.3, f (x) = 4 cos 3x has period 2𝜋𝜋∕3 and
g(x) = 2 sin (x∕3) has period 6𝜋𝜋. Explain why the sum
h(x) = 4 cos 3x + 2 sin (x∕3) has period 6𝜋𝜋.

6. Give a different range for sec−1 x than that given in the text.
For which x’s would the value of sec−1 x change? Using the
calculator discussion in exercise 4, give one reason why we
might have chosen the range that we did.

In exercises 1 and 2, convert the given radians measure to
degrees.

1. (a) 𝜋𝜋
4

(b) 𝜋𝜋
3

(c) 𝜋𝜋
6

(d) 4𝜋𝜋
3

2. (a) 3𝜋𝜋
5

(b) 𝜋𝜋
7

(c) 2 (d) 3
............................................................

In exercises 3 and 4, convert the given degrees measure to
radians.

3. (a) 180◦ (b) 270◦ (c) 120◦ (d) 30◦

4. (a) 40◦ (b) 80◦ (c) 450◦ (d) 390◦

............................................................

In exercises 5–14, find all solutions of the given equation.

5. 2 cos x − 1 = 0 6. 2 sin x + 1 = 0

7.
√

2 cos x − 1 = 0 8. 2 sin x −
√

3 = 0
9. sin2 x − 4 sin x + 3 = 0 10. sin2 x − 2 sin x − 3 = 0

11. sin2 x + cos x − 1 = 0 12. sin 2x − cos x = 0
13. cos2 x + cos x = 0 14. sin2 x − sin x = 0
............................................................

In exercises 15–24, sketch a graph of the function.

15. f (x) = sin 2x 16. f (x) = cos 3x

17. f (x) = tan 2x 18. f (x) = sec 3x

19. f (x) = 3 cos (x − 𝜋𝜋∕2) 20. f (x) = 4 cos (x + 𝜋𝜋)

21. f (x) = sin 2x − 2 cos 2x 22. f (x) = cos 3x − sin 3x

23. f (x) = sin x sin 12x 24. f (x) = sin x cos 12x
............................................................

Inexercises25–32, identify theamplitude,periodandfrequency.

25. f (x) = 3 sin 2x 26. f (x) = 2 cos 3x

27. f (x) = 5 cos 3x 28. f (x) = 3 sin 5x

29. f (x) = 3 cos (2x − 𝜋𝜋∕2) 30. f (x) = 4 sin (3x + 𝜋𝜋)

31. f (x) = −4 sin x 32. f (x) = −2 cos 3x
............................................................
In exercises 33–36, prove that the given trigonometric identity
is true.
33. sin (𝛼𝛼 − 𝛽𝛽) = sin 𝛼𝛼 cos 𝛽𝛽 − sin 𝛽𝛽 cos 𝛼𝛼

34. cos (𝛼𝛼 − 𝛽𝛽) = cos 𝛼𝛼 cos 𝛽𝛽 + sin 𝛼𝛼 sin 𝛽𝛽

35. (a) cos (2𝜃𝜃) = 2 cos2 𝜃𝜃 − 1 (b) cos (2𝜃𝜃) = 1 − 2 sin2 𝜃𝜃

36. (a) sec2 𝜃𝜃 = tan2 𝜃𝜃 + 1 (b) csc2 𝜃𝜃 = cot2 𝜃𝜃 + 1
............................................................

In exercises 37–46, evaluate the inverse function by sketching a
unit circle, locating the correct angle and evaluating the ordered
pair on the circle.
37. cos−1 0 38. tan−1 0

39. sin−1(−1) 40. cos−1(1)

41. sec−1 1 42. tan−1(−1)

43. sec−1 2 44. csc−1 2

45. cot−1 1 46. tan−1
√

3
............................................................

47. Prove that, for some constant 𝛽𝛽,

4 cos x − 3 sin x = 5 cos (x + 𝛽𝛽).

Then, estimate the value of 𝛽𝛽.

48. Prove that, for some constant 𝛽𝛽,

2 sin x + cos x =
√

5 sin (x + 𝛽𝛽).

Then, estimate the value of 𝛽𝛽.
............................................................

In exercises 49–52, determine whether the function is periodic.
If it is periodic, find the smallest (fundamental) period.

49. f (x) = cos 2x + 3 sin𝜋𝜋x

50. f (x) = sin x − cos
√

2x

51. f (x) = sin 2x − cos 5x

52. f (x) = cos 3x − sin 7x
............................................................
In exercises 53–56, use the range for 𝜽𝜽 to determine the indi-
cated function value.
53. sin 𝜃𝜃 = 1

3
, 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋

2
; find cos 𝜃𝜃.

54. cos 𝜃𝜃 = 4
5
, 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋

2
; find sin 𝜃𝜃.

55. sin 𝜃𝜃 = 1
2
, 𝜋𝜋

2
≤ 𝜃𝜃 ≤ 𝜋𝜋; find cos 𝜃𝜃.

56. sin 𝜃𝜃 = 1
2
, 𝜋𝜋

2
≤ 𝜃𝜃 ≤ 𝜋𝜋; find tan 𝜃𝜃.

............................................................

In exercises 57–64, use a triangle to simplify each expression.
Where applicable, state the range of x’s for which the simplifica-
tion holds.

57. cos (sin−1 x) 58. cos (tan−1 x)

59. tan (sec−1 x) 60. cot (cos−1 x)

61. sin
(
cos−1 1

2

)
62. cos

(
sin−1 1

2

)

63. tan
(
cos−1 3

5

)
64. csc

(
sin−1 2

3

)

............................................................
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equation solving. Explain how to use sin−1 x to find all solu-
tions of the equation sin u = x.

4. Discuss how to compute sec−1 x, csc−1x and cot−1 x on a cal-
culator that has built-in functions only for sin−1 x, cos−1 x
and tan−1 x.

5. In example 3.3, f (x) = 4 cos 3x has period 2𝜋𝜋∕3 and
g(x) = 2 sin (x∕3) has period 6𝜋𝜋. Explain why the sum
h(x) = 4 cos 3x + 2 sin (x∕3) has period 6𝜋𝜋.

6. Give a different range for sec−1 x than that given in the text.
For which x’s would the value of sec−1 x change? Using the
calculator discussion in exercise 4, give one reason why we
might have chosen the range that we did.

In exercises 1 and 2, convert the given radians measure to
degrees.

1. (a) 𝜋𝜋
4

(b) 𝜋𝜋
3

(c) 𝜋𝜋
6

(d) 4𝜋𝜋
3

2. (a) 3𝜋𝜋
5

(b) 𝜋𝜋
7

(c) 2 (d) 3
............................................................

In exercises 3 and 4, convert the given degrees measure to
radians.

3. (a) 180◦ (b) 270◦ (c) 120◦ (d) 30◦

4. (a) 40◦ (b) 80◦ (c) 450◦ (d) 390◦

............................................................

In exercises 5–14, find all solutions of the given equation.

5. 2 cos x − 1 = 0 6. 2 sin x + 1 = 0

7.
√

2 cos x − 1 = 0 8. 2 sin x −
√

3 = 0
9. sin2 x − 4 sin x + 3 = 0 10. sin2 x − 2 sin x − 3 = 0

11. sin2 x + cos x − 1 = 0 12. sin 2x − cos x = 0
13. cos2 x + cos x = 0 14. sin2 x − sin x = 0
............................................................

In exercises 15–24, sketch a graph of the function.

15. f (x) = sin 2x 16. f (x) = cos 3x

17. f (x) = tan 2x 18. f (x) = sec 3x

19. f (x) = 3 cos (x − 𝜋𝜋∕2) 20. f (x) = 4 cos (x + 𝜋𝜋)

21. f (x) = sin 2x − 2 cos 2x 22. f (x) = cos 3x − sin 3x

23. f (x) = sin x sin 12x 24. f (x) = sin x cos 12x
............................................................

Inexercises25–32, identify theamplitude,periodandfrequency.

25. f (x) = 3 sin 2x 26. f (x) = 2 cos 3x

27. f (x) = 5 cos 3x 28. f (x) = 3 sin 5x

29. f (x) = 3 cos (2x − 𝜋𝜋∕2) 30. f (x) = 4 sin (3x + 𝜋𝜋)

31. f (x) = −4 sin x 32. f (x) = −2 cos 3x
............................................................
In exercises 33–36, prove that the given trigonometric identity
is true.
33. sin (𝛼𝛼 − 𝛽𝛽) = sin 𝛼𝛼 cos 𝛽𝛽 − sin 𝛽𝛽 cos 𝛼𝛼

34. cos (𝛼𝛼 − 𝛽𝛽) = cos 𝛼𝛼 cos 𝛽𝛽 + sin 𝛼𝛼 sin 𝛽𝛽

35. (a) cos (2𝜃𝜃) = 2 cos2 𝜃𝜃 − 1 (b) cos (2𝜃𝜃) = 1 − 2 sin2 𝜃𝜃

36. (a) sec2 𝜃𝜃 = tan2 𝜃𝜃 + 1 (b) csc2 𝜃𝜃 = cot2 𝜃𝜃 + 1
............................................................

In exercises 37–46, evaluate the inverse function by sketching a
unit circle, locating the correct angle and evaluating the ordered
pair on the circle.
37. cos−1 0 38. tan−1 0

39. sin−1(−1) 40. cos−1(1)

41. sec−1 1 42. tan−1(−1)

43. sec−1 2 44. csc−1 2

45. cot−1 1 46. tan−1
√

3
............................................................

47. Prove that, for some constant 𝛽𝛽,

4 cos x − 3 sin x = 5 cos (x + 𝛽𝛽).

Then, estimate the value of 𝛽𝛽.

48. Prove that, for some constant 𝛽𝛽,

2 sin x + cos x =
√

5 sin (x + 𝛽𝛽).

Then, estimate the value of 𝛽𝛽.
............................................................

In exercises 49–52, determine whether the function is periodic.
If it is periodic, find the smallest (fundamental) period.

49. f (x) = cos 2x + 3 sin𝜋𝜋x

50. f (x) = sin x − cos
√

2x

51. f (x) = sin 2x − cos 5x

52. f (x) = cos 3x − sin 7x
............................................................
In exercises 53–56, use the range for 𝜽𝜽 to determine the indi-
cated function value.
53. sin 𝜃𝜃 = 1

3
, 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋

2
; find cos 𝜃𝜃.

54. cos 𝜃𝜃 = 4
5
, 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋

2
; find sin 𝜃𝜃.

55. sin 𝜃𝜃 = 1
2
, 𝜋𝜋

2
≤ 𝜃𝜃 ≤ 𝜋𝜋; find cos 𝜃𝜃.

56. sin 𝜃𝜃 = 1
2
, 𝜋𝜋

2
≤ 𝜃𝜃 ≤ 𝜋𝜋; find tan 𝜃𝜃.

............................................................

In exercises 57–64, use a triangle to simplify each expression.
Where applicable, state the range of x’s for which the simplifica-
tion holds.

57. cos (sin−1 x) 58. cos (tan−1 x)

59. tan (sec−1 x) 60. cot (cos−1 x)

61. sin
(
cos−1 1

2

)
62. cos

(
sin−1 1

2

)

63. tan
(
cos−1 3

5

)
64. csc

(
sin−1 2

3

)

............................................................
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In exercises 65–68, use a graphing calculator or computer to
determine the number of solutions of each equation, and
numerically estimate the solutions (x is in radians).

65. 2 cos x = 2 − x 66. 3 sin x = x

67. cos x = x2 − 2 68. sin x = x2

APPLICATIONS

69. A person sitting 2 km from a rocket launch site measures
20◦ up to the current location of the rocket. How high up is
the rocket?

70. A person who is 6 ft tall stands 4 ft from the base of a
light pole and casts a 2-ft-long shadow. How tall is the
light pole?

71. A surveyor stands 80 ft from the base of a govern-
mental building and measures an angle of 50◦ to the top
of the steeple on top of the building. The surveyor figures
that the center of the steeple lies 20 ft inside the front of the
structure. Find the distance from the ground to the top of
the steeple.

72. Suppose that the surveyor of exercise 71 estimates that the
center of the steeple lies between 20′ and 21′ inside the
front of the structure. Determine how much the extra foot
would change the calculation of the height of the building.

73. A picture hanging in an art gallery has a frame 20 in high,
and the bottom of the frame is 6 ft above the floor. A person
whose eyes are 6 ft above the floor stands x ft from the wall.
Let A be the angle formed by the ray from the person’s eye
to the bottom of the frame and the ray from the person’s
eye to the top of the frame. Write A as a function of x and
graph y = A(x).

x

20"

6 ft

A

74. In golf, the goal is to hit a ball into a hole of diameter 4.5 in.
Suppose a golfer stands x ft from the hole trying to putt the
ball into the hole. A first approximation of the margin of
error in a putt is to measure the angle A formed by the ray
from the ball to the right edge of the hole and the ray from
the ball to the left edge of the hole. Find A as a function
of x.

75. In an AC circuit, the voltage is given by v(t) = vp sin(2𝜋𝜋ft),
where vp is the peak voltage and f is the frequency in Hz.

A voltmeter actually measures an average (called the root-
mean-square) voltage, equal to vp∕

√
2. If the voltage has

amplitude 170 and period 𝜋𝜋∕30, find the frequency and me-
ter voltage.

76. An old-style LP record player rotates records at 33 1
3

rpm
(revolutions per minute). What is the period (in minutes) of
the rotation? What is the period for a 45-rpm record?

77. Suppose that the ticket sales of an airline (in thousands of

dollars) is given by s(t) = 110 + 2t + 15 sin
(

1
6
𝜋𝜋t
)

, where t is
measured in months. What real-world phenomenon might
cause the fluctuation in ticket sales modeled by the sine
term? Based on your answer, what month corresponds to
t = 0? Disregarding seasonal fluctuations, by what amount
is the airline’s sales increasing annually?

78. Piano tuners sometimes start by striking a tuning fork and
then the corresponding piano key. If the tuning fork and
piano note each have frequency 8, then the resulting sound
is sin 8t + sin 8t. Graph this. If the piano is slightly out-of-
tune at frequency 8.1, the resulting sound is sin 8t + sin 8.1t.
Graph this and explain how the piano tuner can hear the
small difference in frequency.

EXPLORATORY EXERCISES

1. In his book and video series The Ring of Truth, physicist Philip
Morrison performed an experiment to estimate the circum-
ference of the earth. In Nebraska, he measured the angle
to a bright star in the sky, then drove 370 mi due south into
Kansas and measured the new angle to the star. Some geom-
etry shows that the difference in angles, about 5.02◦, equals
the angle from the center of the earth to the two locations
in Nebraska and Kansas. If the earth is perfectly spherical
(it’s not) and the circumference of the portion of the circle
measured out by 5.02◦ is 370 mi, estimate the circumference
of the earth. This experiment was based on a similar exper-
iment by the ancient Greek scientist Eratosthenes. The an-
cient Greeks and the Spaniards of Columbus’ day knew that
the earth was round, they just disagreed about the circum-
ference. Columbus argued for a figure about half of the ac-
tual value, since a ship couldn’t survive on the water long
enough to navigate the true distance.

2. An oil tank with circular cross sections lies on its side. A
stick is inserted in a hole at the top and used to measure
the depth d of oil in the tank. Based on this measurement,
the goal is to compute the percentage of oil left in the tank.

d

To simplify calculations, suppose the circle is a unit circle
with center at (0, 0). Sketch radii extending from the origin
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to the top of the oil. The area of oil at the bottom equals the
area of the portion of the circle bounded by the radii minus
the area of the triangle formed above the oil in the figure.

d

1 1
θ

Start with the triangle, which has area one-half base
times height. Explain why the height is 1 − d. Find a
right triangle in the figure (there are two of them) with
hypotenuse 1 (the radius of the circle) and one verti-
cal side of length 1 − d. The horizontal side has length
equal to one-half the base of the larger triangle. Show
that this equals

√
1 − (1 − d)2. The area of the por-

tion of the circle equals 𝜋𝜋𝜋𝜋∕2𝜋𝜋 = 𝜃𝜃∕2, where 𝜃𝜃 is the
angle at the top of the triangle. Find this angle as a

function of d. (Hint: Go back to the right triangle used above
with upper angle 𝜃𝜃∕2.) Then find the area filled with oil and
divide by 𝜋𝜋 to get the portion of the tank filled with oil.

3. Computer graphics can be misleading. This exercise works
best using a “disconnected” graph (individual dots, not
connected). Graph y = sin x2 using a graphing window for
which each pixel represents a step of 0.1 in the x- or
y-direction. You should get the impression of a sine wave
that oscillates more and more rapidly as you move to the
left and right. Next, change the graphing window so that
the middle of the original screen (probably x = 0) is at the
far left of the new screen. You will likely see what appears to
be a random jumble of dots. Continue to change the graph-
ing window by increasing the x-values. Describe the pat-
terns or lack of patterns that you see. You should find one
pattern that looks like two rows of dots across the top and
bottom of the screen; another pattern looks like the origi-
nal sine wave. For each pattern that you find, pick adjacent
points with x-coordinates a and b. Then change the graph-
ing window so that a ≤ x ≤ b and find the portion of the
graph that is missing. Remember that, whether the points
are connected or not, computer graphs always leave out
part of the graph; it is part of your job to know whether
or not the missing part is important.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Some bacteria reproduce very quickly, as you may have discovered if you have ever had
an infected cut or strep throat. Under the right circumstances, the number of bacteria
in certain cultures will double in as little as an hour. In this section, we discuss some
functions that can be used to model such rapid growth.

Suppose that initially there are 100 bacteria at a given site and the population dou-
bles every hour. Call the population function P(t), where t represents time (in hours)
and start the clock running at time t = 0. Since the initial population is 100, we have
P(0) = 100. After 1 hour, the population has doubled to 200, so that P(1) = 200. After
another hour, the population will have doubled again to 400, making P(2) = 400 and
so on.

To compute the bacterial population after 10 hours, you could calculate the
population at 4 hours, 5 hours and so on, or you could use the following shortcut. To
find P(1), double the initial population, so that P(1) = 2 ⋅ 100. To find P(2), double the
population at time t = 1, so that P(2) = 2 ⋅ 2 ⋅ 100 = 22 ⋅ 100. Similarly, P(3) = 23 ⋅ 100.
This pattern leads us to

P(10) = 210 ⋅ 100 = 102,400.

Observe that the population can be modeled by the function

P(t) = 2t ⋅ 100.

We call P(t) an exponential function because the variable t is in the exponent. There
is a subtle question here: what is the domain of this function? We have so far used
only integer values of t, but for what other values of t does P(t) make sense? Certainly,
rational powers make sense, as in P(1∕2) = 21∕2 ⋅ 100, where 21∕2 =

√
2. This says that

the number of bacteria in the culture after a half hour is approximately

P(1∕2) = 21∕2 ⋅ 100 =
√

2 ⋅ 100 ≈ 141.

1.5
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to the top of the oil. The area of oil at the bottom equals the
area of the portion of the circle bounded by the radii minus
the area of the triangle formed above the oil in the figure.

d

1 1
θ

Start with the triangle, which has area one-half base
times height. Explain why the height is 1 − d. Find a
right triangle in the figure (there are two of them) with
hypotenuse 1 (the radius of the circle) and one verti-
cal side of length 1 − d. The horizontal side has length
equal to one-half the base of the larger triangle. Show
that this equals

√
1 − (1 − d)2. The area of the por-

tion of the circle equals 𝜋𝜋𝜋𝜋∕2𝜋𝜋 = 𝜃𝜃∕2, where 𝜃𝜃 is the
angle at the top of the triangle. Find this angle as a

function of d. (Hint: Go back to the right triangle used above
with upper angle 𝜃𝜃∕2.) Then find the area filled with oil and
divide by 𝜋𝜋 to get the portion of the tank filled with oil.

3. Computer graphics can be misleading. This exercise works
best using a “disconnected” graph (individual dots, not
connected). Graph y = sin x2 using a graphing window for
which each pixel represents a step of 0.1 in the x- or
y-direction. You should get the impression of a sine wave
that oscillates more and more rapidly as you move to the
left and right. Next, change the graphing window so that
the middle of the original screen (probably x = 0) is at the
far left of the new screen. You will likely see what appears to
be a random jumble of dots. Continue to change the graph-
ing window by increasing the x-values. Describe the pat-
terns or lack of patterns that you see. You should find one
pattern that looks like two rows of dots across the top and
bottom of the screen; another pattern looks like the origi-
nal sine wave. For each pattern that you find, pick adjacent
points with x-coordinates a and b. Then change the graph-
ing window so that a ≤ x ≤ b and find the portion of the
graph that is missing. Remember that, whether the points
are connected or not, computer graphs always leave out
part of the graph; it is part of your job to know whether
or not the missing part is important.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Some bacteria reproduce very quickly, as you may have discovered if you have ever had
an infected cut or strep throat. Under the right circumstances, the number of bacteria
in certain cultures will double in as little as an hour. In this section, we discuss some
functions that can be used to model such rapid growth.

Suppose that initially there are 100 bacteria at a given site and the population dou-
bles every hour. Call the population function P(t), where t represents time (in hours)
and start the clock running at time t = 0. Since the initial population is 100, we have
P(0) = 100. After 1 hour, the population has doubled to 200, so that P(1) = 200. After
another hour, the population will have doubled again to 400, making P(2) = 400 and
so on.

To compute the bacterial population after 10 hours, you could calculate the
population at 4 hours, 5 hours and so on, or you could use the following shortcut. To
find P(1), double the initial population, so that P(1) = 2 ⋅ 100. To find P(2), double the
population at time t = 1, so that P(2) = 2 ⋅ 2 ⋅ 100 = 22 ⋅ 100. Similarly, P(3) = 23 ⋅ 100.
This pattern leads us to

P(10) = 210 ⋅ 100 = 102,400.

Observe that the population can be modeled by the function

P(t) = 2t ⋅ 100.

We call P(t) an exponential function because the variable t is in the exponent. There
is a subtle question here: what is the domain of this function? We have so far used
only integer values of t, but for what other values of t does P(t) make sense? Certainly,
rational powers make sense, as in P(1∕2) = 21∕2 ⋅ 100, where 21∕2 =

√
2. This says that

the number of bacteria in the culture after a half hour is approximately

P(1∕2) = 21∕2 ⋅ 100 =
√

2 ⋅ 100 ≈ 141.

1.5

Exponential and Logarithmic Functions
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It’s a simple matter to interpret fractional powers as roots. For instance,

x1∕2 =
√

x,

x1∕3 = 3
√

x,

x2∕3 = 3
√

x2 = ( 3
√

x)2,

x3.1 = x31∕10 = 10
√

x31

and so on. But, what about irrational powers? They are harder to define, but they work
exactly the way you would want them to. For instance, since 𝜋𝜋 is between 1.14 and 1.15,
2𝜋𝜋 is between 23.14 and 23.15. In this way, we define 2x for x irrational to fill in the gaps
in the graph of y = 2x for x rational. That is, if x is irrational and a < x < b, for rational
numbers a and b, then 2a < 2x < 2b.

If for some reason you wanted to find the bacterial population after 𝜋𝜋 hours, you
can use your calculator or computer to obtain the approximate population:

P(𝜋𝜋) = 2𝜋𝜋 ⋅ 100 ≈ 882.

For your convenience, we now summarize the usual rules of exponents.

RULES OF EXPONENTS (FOR x, y > 0)

• For any integers m and n (n ≥ 2),

xm∕n = n
√

xm = ( n
√

x)m.

• For any real number p,

x−p = 1
xp , (xy)p = xp ⋅ yp and

(
x
y

)p

= xp

yp .

• For any real numbers p and q,

(xp)q = xp⋅q.

• For any real numbers p and q,

xp ⋅ xq = xp+q and xp

xq = xp−q

Throughout your calculus course, you will need to be able to quickly convert back and
forth between exponential form and fractional or root form.

EXAMPLE 4.1 Converting Expressions to Exponential Form

Convert each to exponential form: (a) 3
√

x5, (b) 5
3
√

x
, (c) 3x2

2
√

x
and (d) (2x ⋅ 23+x)2.

Solution For (a), simply leave the 3 alone and convert the power:

3
√

x5 = 3x5∕2.

For (b), use a negative exponent to write x in the numerator:

5
3
√

x
= 5x−1∕3.

For (c), first separate the constants from the variables and then simplify:

3x2

2
√

x
= 3

2
x2

x1∕2
= 3

2
x2−1∕2 = 3

2
x3∕2.

For (d), first work inside the parentheses and then square:

(2x ⋅ 23+x)2 = (2x+3+x)2 = (22x+3)2 = 24x+6.

40 | Lesson 1-4 | Exponential and Logarithmic Functions
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In general, we have the following definition.

DEFINITION 4.1
For any constants a ≠ 0 and b > 0, the function f (x) = a ⋅ bx is called an
exponential function. Here, b is called the base and x is the exponent.

Be careful to distinguish between algebraic functions such as f (x) = x3 and
g(x) = x2∕3 and exponential functions. For exponential functions such as h(x) = 2x, the
variable is in the exponent (hence the name), instead of in the base. Also, notice that
the domain of an exponential function is the entire real line, (−∞, ∞), while the range
is the open interval (0, ∞), since bx > 0 for all x.

While any positive real number can be used as a base for an exponential func-
tion, three bases are the most commonly used in practice. Base 2 arises naturally when
analyzing processes that double at regular intervals (such as the bacteria at the begin-
ning of this section). Our standard counting system is base 10, so this base is com-
monly used. However, far and away the most useful base is the irrational number e.
Like 𝜋𝜋, the number e has a surprising tendency to occur in important calculations. We
define e by

e = lim
n→∞

(
1 + 1

n

)n
. (4.1)

Note that equation (4.1) has at least two serious shortcomings. First, we have not yet
said what the notation lim

n→∞
means. Second, it’s unclear why anyone would ever

define a number in such a strange way.
It suffices for the moment to say that equation (4.1) means that e can be approx-

imated by calculating values of (1 + 1∕n)n for large values of n and that the larger the
value of n, the closer the approximation will be to the actual value of e. In particular, if
you look at the sequence of numbers (1 + 1∕2)2, (1 + 1∕3)3, (1 + 1∕4)4 and so on, they
will get progressively closer and closer to (i.e., home in on) the irrational number e.

To get an idea of the value of e, compute several of these numbers:
(

1 + 1
10

)10
= 2.5937 . . . ,

(
1 + 1

1000

)1000
= 2.7169 . . . ,

(
1 + 1

10,000

)10,000

= 2.7181 . . .

and so on. You should compute enough of these values to convince yourself that the
first few digits of the decimal representation of e (e ≈ 2.718281828459 . . .) are correct.

EXAMPLE 4.2 Computing Values of Exponentials

Approximate e4, e−1∕5 and e0.

Solution From a calculator, we find that
e4 = e ⋅ e ⋅ e ⋅ e ≈ 54.598.

From the usual rules of exponents,

e−1∕5 = 1
e1∕5

= 1
5
√

e
≈ 0.81873.

(On a calculator, it is convenient to replace −1∕5 with −0.2.) Finally, e0 = 1.
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1-39 SECTION 1.4 • • Exponential and Logarithmic Functions 39

In Figures 1.53–1.55, each exponential function is one-to-one and, hence, has an
inverse function. We define the logarithmic functions to be inverses of the exponential
functions.

DEFINITION 4.2
For any positive number b ≠ 1, the logarithm function with base b, written logb x,
is defined by

y = logb x if and only if x = by.

That is, the logarithm logb x gives the exponent to which you must raise the base b
to get the given number x. For example,

log10 10 = 1 (since 101 = 10),
log10 100 = 2 (since 102 = 100),

log10 1000 = 3 (since 103 = 1000)

and so on. The value of log10 45 is less clear than the preceding three values, but the
idea is the same: you need to find the number y such that 10y = 45. The answer lies
between 1 and 2, but to be more precise, you will need to employ trial and error. You
should get log10 45 ≈ 1.6532.

Observe from Definition 4.2 that for any base b > 0 (b ≠ 1), if y = logb x, then
x = by > 0. That is, the domain of f (x) = logb x is the interval (0,∞). Likewise, the range
of f is the entire real line, (−∞,∞).

As with exponential functions, the most useful bases turn out to be 2, 10, and e.
We usually abbreviate log10 x by log x. Similarly, loge x is usually abbreviated ln x (short
for natural logarithm).

EXAMPLE 4.4 Evaluating Logarithms

Without using your calculator, determine log(1∕10), log(0.001), ln e and ln e3.

Solution Since 1∕10 = 10−1, log(1∕10) = −1. Similarly, since 0.001 = 10−3, we have
that log(0.001) = −3. Since ln e = loge e1, ln e = 1. Similarly, ln e3 = 3.

We want to emphasize the inverse relationship defined by Definition 4.2. That is,
bx and logb x are inverse functions for any b > 0 (b ≠ 1).

In particular, for the base e, we have

eln x = x for any x > 0 and ln (ex) = x for any x. (4.2)

We demonstrate this as follows. Let

y = ln x = loge x.
By Definition 4.2, we have that

x = ey = eln x.
We can use this relationship between natural logarithms and exponentials to solve
equations involving logarithms and exponentials, as in examples 4.5 and 4.6.

EXAMPLE 4.5 Solving a Logarithmic Equation

Solve the equation ln(x + 5) = 3 for x.

Solution Taking the exponential of both sides of the equation and writing things
backward (for convenience), we have

e3 = eln(x+5) = x + 5,

from (5.2). Subtracting 5 from both sides gives us

e3 − 5 = x.
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EXAMPLE 4.8 Simplifying Logarithmic Expressions

Write each as a single logarithm: (a) log2 27x − log2 3x and (b) ln 8 − 3 ln (1∕2).

Solution First, note that there is more than one order in which to work each prob-
lem. For part (a), we have 27 = 33 and so, 27x = (33)x = 33x. This gives us

log2 27x − log2 3x = log2 33x − log2 3x

= 3x log2 3 − x log2 3 = 2x log2 3 = log2 32x.

For part (b), note that 8 = 23 and 1∕2 = 2−1. Then,

ln 8 − 3 ln (1∕2) = 3 ln 2 − 3(− ln 2)
= 3 ln 2 + 3 ln 2 = 6 ln 2 = ln 26 = ln 64.

In some circumstances, it is beneficial to use the rules of logarithms to expand a
given expression, as in example 4.9.

EXAMPLE 4.9 Expanding a Logarithmic Expression

Use the rules of logarithms to expand the expression ln
(

x3y4

z5

)
.

Solution From Theorem 4.2, we have that

ln
(

x3y4

z5

)
= ln (x3y4) − ln (z5) = ln (x3) + ln (y4) − ln (z5)

= 3 ln x + 4 ln y − 5 ln z.

Using the rules of exponents and logarithms, we can rewrite any exponential as
an exponential with base e, as follows. For any base a > 0, we have

ax = eln (ax) = ex ln a. (4.3)

This follows from Theorem 4.2 (iii) and the fact that elny = y, for all y > 0.

EXAMPLE 4.10 Rewriting Exponentials as Exponentials with Base e

Rewrite the exponentials 2x, 5x and (2∕5)x as exponentials with base e.

Solution From (4.3), we have

2x = eln (2x) = ex ln 2,

5x = eln (5x) = ex ln 5

and
(2

5

)x
= eln [(2∕5)x] = ex ln (2∕5).

Just as we can rewrite an exponential with any positive base in terms of an expo-
nential with base e, we can rewrite any logarithm in terms of natural logarithms, as
follows. We will next show that

logb x = ln x
ln b

, if b > 0, b ≠ 1 and x > 0. (4.4)

Let y = logb x. Then by Definition 4.2, we have that x = by . Taking the natural logarithm
of both sides of this equation, we get by Theorem 4.2 (iii) that

ln x = ln(by) = y ln b.
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46 CHAPTER 1 • • Preliminaries 1-46

67. The Gateway Arch is both 630 ft wide and 630 ft tall. (Most
people think that it looks taller than it is wide.) One model

for the outline of the arch is y = 757.7 − 127.7 cosh
(

x
127.7

)

for y ≥ 0. Use a graphing calculator to approximate the x-
and y-intercepts and determine if the model has the correct
horizontal and vertical measurements.

68. To model the outline of the Gateway Arch with a parabola,
you can start with y = −c(x + 315)(x − 315) for some con-
stant c. Explain why this gives the correct x-intercepts.
Determine the constant c that gives a y-intercept of 630.
Graph this parabola and the hyperbolic cosine in exer-
cise 67 on the same axes. Are the graphs nearly identical or
very different?

69. On a standard piano, the A below middle C produces a
sound wave with frequency 220 Hz (cycles per second). The
frequency of the A one octave higher is 440 Hz. In general,
doubling the frequency produces the same note an octave
higher. Find an exponential formula for the frequency f as
a function of the number of octaves x above the A below
middle C.

70. There are 12 notes in an octave on a standard piano.
Middle C is 3 notes above A (see exercise 69). If the notes are
tuned equally, this means that middle C is a quarter-octave
above A. Use x = 1

4
in your formula from exercise 69 to

estimate the frequency of middle C.

EXPLORATORY EXERCISES

1. Graph y = x2 and y = 2x and approximate the two positive
solutions of the equation x2 = 2x. Graph y = x3 and y = 3x,
and approximate the two positive solutions of the equation
x3 = 3x. Explain why x = a will always be a solution of xa =
ax, a > 0. What is different about the role of x = 2 as a solu-
tion of x2 = 2x compared to the role of x = 3 as a solution
of x3 = 3x? To determine the a-value at which the change
occurs, graphically solve xa = ax for a = 2.1, 2.2, . . . , 2.9,
and note that a = 2.7 and a = 2.8 behave differently. Con-
tinue to narrow down the interval of change by testing
a = 2.71, 2.72, . . . , 2.79. Then guess the exact
value of a.

2. Graph y = ln x and describe the behavior near x = 0. Then
graph y = x ln x and describe the behavior near x = 0. Re-
peat this for y = x2 ln x, y = x1∕2 ln x and y = xa ln x for a va-
riety of positive constants a. Because the function “blows
up” at x = 0, we say that y = ln x has a singularity at x = 0.
The order of the singularity at x = 0 of a function f (x) is
the smallest value of a such that y = xaf (x) doesn’t have a
singularity at x = 0. Determine the order of the singularity
at x = 0 for (a) f (x) = 1

x
, (b) f (x) = 1

x2
and (c) f (x) = 1

x3
. The

higher the order of the singularity, the “worse” the singu-
larity is. Based on your work, how bad is the singularity of
y = ln x at x = 0?

1.5 TRANSFORMATIONS OF FUNCTIONS

You are now familiar with a long list of functions: polynomials, rational functions,
trigonometric functions, exponentials and logarithms. One important goal of this
course is to more fully understand the properties of these functions. To a large extent,
you will build your understanding by examining a few key properties of functions.

We expand on our list of functions by combining them. We begin in a straightfor-
ward fashion with Definition 6.1.

DEFINITION 5.1
Suppose that f and g are functions with domains D1 and D2, respectively. The
functions f + g, f − g and f ⋅ g are defined by

(f + g)(x) = f (x) + g(x),

(f − g)(x) = f (x) − g(x)

and (f ⋅ g)(x) = f (x) ⋅ g(x),

for all x in D1 ∩ D2 (i.e., x ∈ D1, and x ∈ D2). The function
f
g

is defined by

(
f
g

)
(x) =

f (x)
g(x)

,

for all x in D1 ∩ D2 such that g(x) ≠ 0.
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67. The Gateway Arch is both 630 feet wide and 630 feet tall.
(Most people think that it looks taller than it is wide.)
One model for the outline of the arch is y = 757.7 −
127.7 cosh

(
x

127.7

)
for y ≥ 0. Use a graphing calculator to ap-

proximate the x- and y-intercepts and determine if the model
has the correct horizontal and vertical measurements.

68. To model the outline of the Gateway Arch with a parabola,
you can start with y = −c(x + 315)(x − 315) for some con-
stant c. Explain why this gives the correct x-intercepts.
Determine the constant c that gives a y-intercept of 630.
Graph this parabola and the hyperbolic cosine in exer-
cise 67 on the same axes. Are the graphs nearly identical or
very different?

69. On a standard piano, the A below middle C produces a
sound wave with frequency 220 Hz (cycles per second). The
frequency of the A one octave higher is 440 Hz. In general,
doubling the frequency produces the same note an octave
higher. Find an exponential formula for the frequency f as
a function of the number of octaves x above the A below
middle C.

70. There are 12 notes in an octave on a standard piano.
Middle C is 3 notes above A (see exercise 69). If the notes are
tuned equally, this means that middle C is a quarter-octave
above A. Use x = 1

4
in your formula from exercise 69 to

estimate the frequency of middle C.

EXPLORATORY EXERCISES

1. Graph y = x2 and y = 2x and approximate the two positive
solutions of the equation x2 = 2x. Graph y = x3 and y = 3x,
and approximate the two positive solutions of the equation
x3 = 3x. Explain why x = a will always be a solution of xa =
ax, a > 0. What is different about the role of x = 2 as a solu-
tion of x2 = 2x compared to the role of x = 3 as a solution
of x3 = 3x? To determine the a-value at which the change
occurs, graphically solve xa = ax for a = 2.1, 2.2, . . . , 2.9,
and note that a = 2.7 and a = 2.8 behave differently. Con-
tinue to narrow down the interval of change by testing
a = 2.71, 2.72, . . . , 2.79. Then guess the exact
value of a.

2. Graph y = ln x and describe the behavior near x = 0. Then
graph y = x ln x and describe the behavior near x = 0. Re-
peat this for y = x2 ln x, y = x1∕2 ln x and y = xa ln x for a va-
riety of positive constants a. Because the function “blows
up” at x = 0, we say that y = ln x has a singularity at x = 0.
The order of the singularity at x = 0 of a function f (x) is
the smallest value of a such that y = xaf (x) doesn’t have a
singularity at x = 0. Determine the order of the singularity
at x = 0 for (a) f (x) = 1

x
, (b) f (x) = 1

x2
and (c) f (x) = 1

x3
. The

higher the order of the singularity, the “worse” the singu-
larity is. Based on your work, how bad is the singularity of
y = ln x at x = 0?

TRANSFORMATIONS OF FUNCTIONS

You are now familiar with a long list of functions: polynomials, rational functions,
trigonometric functions, exponentials and logarithms. One important goal of this
course is to more fully understand the properties of these functions. To a large extent,
you will build your understanding by examining a few key properties of functions.

We expand on our list of functions by combining them. We begin in a straightfor-
ward fashion with Definition 5.1.

DEFINITION 5.1
Suppose that f and g are functions with domains D1 and D2, respectively. The
functions f + g, f − g and f ⋅ g are defined by

(f + g)(x) = f (x) + g(x),

(f − g)(x) = f (x) − g(x)

and (f ⋅ g)(x) = f (x) ⋅ g(x),

for all x in D1 ∩ D2 (i.e., x ∈ D1, and x ∈ D2). The function
f
g

is defined by

(
f
g

)
(x) =

f (x)
g(x)

,

for all x in D1 ∩ D2 such that g(x) ≠ 0.

1.6
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67. The Gateway Arch is both 630 feet wide and 630 feet tall.
(Most people think that it looks taller than it is wide.)
One model for the outline of the arch is y = 757.7 −
127.7 cosh

(
x

127.7

)
for y ≥ 0. Use a graphing calculator to ap-

proximate the x- and y-intercepts and determine if the model
has the correct horizontal and vertical measurements.

68. To model the outline of the Gateway Arch with a parabola,
you can start with y = −c(x + 315)(x − 315) for some con-
stant c. Explain why this gives the correct x-intercepts.
Determine the constant c that gives a y-intercept of 630.
Graph this parabola and the hyperbolic cosine in exer-
cise 67 on the same axes. Are the graphs nearly identical or
very different?

69. On a standard piano, the A below middle C produces a
sound wave with frequency 220 Hz (cycles per second). The
frequency of the A one octave higher is 440 Hz. In general,
doubling the frequency produces the same note an octave
higher. Find an exponential formula for the frequency f as
a function of the number of octaves x above the A below
middle C.

70. There are 12 notes in an octave on a standard piano.
Middle C is 3 notes above A (see exercise 69). If the notes are
tuned equally, this means that middle C is a quarter-octave
above A. Use x = 1

4
in your formula from exercise 69 to

estimate the frequency of middle C.

EXPLORATORY EXERCISES

1. Graph y = x2 and y = 2x and approximate the two positive
solutions of the equation x2 = 2x. Graph y = x3 and y = 3x,
and approximate the two positive solutions of the equation
x3 = 3x. Explain why x = a will always be a solution of xa =
ax, a > 0. What is different about the role of x = 2 as a solu-
tion of x2 = 2x compared to the role of x = 3 as a solution
of x3 = 3x? To determine the a-value at which the change
occurs, graphically solve xa = ax for a = 2.1, 2.2, . . . , 2.9,
and note that a = 2.7 and a = 2.8 behave differently. Con-
tinue to narrow down the interval of change by testing
a = 2.71, 2.72, . . . , 2.79. Then guess the exact
value of a.

2. Graph y = ln x and describe the behavior near x = 0. Then
graph y = x ln x and describe the behavior near x = 0. Re-
peat this for y = x2 ln x, y = x1∕2 ln x and y = xa ln x for a va-
riety of positive constants a. Because the function “blows
up” at x = 0, we say that y = ln x has a singularity at x = 0.
The order of the singularity at x = 0 of a function f (x) is
the smallest value of a such that y = xaf (x) doesn’t have a
singularity at x = 0. Determine the order of the singularity
at x = 0 for (a) f (x) = 1

x
, (b) f (x) = 1

x2
and (c) f (x) = 1

x3
. The

higher the order of the singularity, the “worse” the singu-
larity is. Based on your work, how bad is the singularity of
y = ln x at x = 0?

TRANSFORMATIONS OF FUNCTIONS

You are now familiar with a long list of functions: polynomials, rational functions,
trigonometric functions, exponentials and logarithms. One important goal of this
course is to more fully understand the properties of these functions. To a large extent,
you will build your understanding by examining a few key properties of functions.

We expand on our list of functions by combining them. We begin in a straightfor-
ward fashion with Definition 5.1.

DEFINITION 5.1
Suppose that f and g are functions with domains D1 and D2, respectively. The
functions f + g, f − g and f ⋅ g are defined by

(f + g)(x) = f (x) + g(x),

(f − g)(x) = f (x) − g(x)

and (f ⋅ g)(x) = f (x) ⋅ g(x),

for all x in D1 ∩ D2 (i.e., x ∈ D1, and x ∈ D2). The function
f
g

is defined by

(
f
g

)
(x) =

f (x)
g(x)

,

for all x in D1 ∩ D2 such that g(x) ≠ 0.

1.6

Transformations of Functions
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In example 5.1, we examine various combinations of several simple functions.

EXAMPLE 5.1 Combinations of Functions

If f (x) = x − 3 and g(x) =
√

x − 1, determine the functions f + g, 3f − g and
f
g

,

stating the domains of each.

Solution First, note that the domain of f is the entire real line and the domain of g
is the set of all x ≥ 1. Now,

(f + g)(x) = x − 3 +
√

x − 1
and (3f − g)(x) = 3(x − 3) −

√
x − 1 = 3x − 9 −

√
x − 1.

Notice that the domain of both (f + g) and (3f − g) is {x|x ≥ 1}. For

(
f
g

)
(x) =

f (x)
g(x)

= x − 3√
x − 1

,

the domain is {x|x > 1}, where we have added the restriction x ≠ 1 to avoid dividing
by 0.

Definition 5.1 and example 5.1 show us how to do arithmetic with functions. An
operation on functions that does not directly correspond to arithmetic is the composition
of two functions.

f

g(x)

x

f(g(x))

g

(f◦g)(x) = f (g(x))

DEFINITION 5.2
The composition of functions f and g, written f ◦ g, is defined by

(f ◦ g)(x) = f (g(x)),

for all x such that x is in the domain of g and g(x) is in the domain of f .

The composition of two functions is a two-step process, as indicated in the margin
schematic. Be careful to notice what this definition is saying. In particular, for f (g(x)) to
be defined, you first need g(x) to be defined, so x must be in the domain of g.Next, f must
be defined at the point g(x), so that the number g(x) will need to be in the domain of f .

EXAMPLE 5.2 Finding the Composition of Two Functions

For f (x) = x2 + 1 and g(x) =
√

x − 2, find the compositions f ◦ g and g ◦ f and
identify the domain of each.

Solution First, we have

(f ◦ g)(x) = f (g(x)) = f (
√

x − 2)

= (
√

x − 2)2 + 1 = x − 2 + 1 = x − 1.

It’s tempting to write that the domain of f ◦ g is the entire real line, but look more
carefully. Note that for x to be in the domain of g, we must have x ≥ 2. The domain
of f is the whole real line, so this places no further restrictions on the domain of
f ◦ g. Even though the final expression x − 1 is defined for all x, the domain of (f ◦ g)
is {x | x ≥ 2}.

For the second composition,

(g ◦ f )(x) = g(f (x)) = g(x2 + 1)

=
√

(x2 + 1) − 2 =
√

x2 − 1.

The resulting square root requires x2 − 1 ≥ 0 or |x| ≥ 1. Since the “inside” function
f is defined for all x, the domain of g ◦ f is {x|||x| ≥ 1}, which we write in interval
notation as (−∞,−1] ∪ [1,∞).
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52 CHAPTER 1 • • Preliminaries 1-52

To graph this function, take the parabola y = x2 (see Figure 0.80a) and translate the
graph 2 units to the left and 1 unit down. (See Figure 0.80b.)

The following table summarizes our discoveries in this section.

Transformations of f (x)

Transformation Form Effect on Graph

Vertical translation f (x) + c |c| units up (c > 0) or down (c < 0)

Horizontal translation f (x + c) |c| units left (c > 0) or right (c < 0)

Vertical scale cf (x) (c > 0) multiply vertical scale by c

Horizontal scale f (cx) (c > 0) divide horizontal scale by c

You will explore additional transformations in the exercises.

EXERCISES 1.5

WRITING EXERCISES

1. The restricted domain of example 5.2 may be puzzling.
Consider the following analogy. Suppose you have an air-
plane flight from New York to Los Angeles with a stop for
refueling in Minneapolis. If bad weather has closed the air-
port in Minneapolis, explain why your flight will be can-
celed (or at least rerouted) even if the weather is great in
New York and Los Angeles.

2. Explain why the graphs of y = 4(x2 − 1) and y = (4x)2 − 1
in Figures 1.65c and 1.66c appear “thinner” than the graph
of y = x2 − 1.

3. As illustrated in example 5.9, completing the square can
be used to rewrite any quadratic function in the form
a(x − d)2 + e. Using the transformation rules in this section,
explain why this means that all parabolas (with a > 0) will
look essentially the same.

4. Explain why the graph of y = f (x + 4) is obtained by mov-
ing the graph of y = f (x) four units to the left, instead of to
the right.

In exercises 1–6, find the compositions f ◦ g and g ◦ f , and
identify their respective domains.

1. f (x) = x + 1, g(x) =
√

x − 3

2. f (x) = x − 2, g(x) =
√

x + 1

3. f (x) = ex, g(x) = ln x

4. f (x) =
√

1 − x, g(x) = ln x

5. f (x) = x2 + 1, g(x) = sin x

6. f (x) = 1
x2 − 1

, g(x) = x2 − 2

............................................................

In exercises 7–16, identify functions f(x) and g(x) such that the
given function equals (f ◦ g)(x).

7.
√

x4 + 1 8. 3
√

x + 3 9. 1
x2 + 1

10. 1
x2

+ 1 11. (4x + 1)2 + 3 12. 4 (x + 1)2 + 3

13. sin3 x 14. sin x3 15. ex2+1 16. e4x−2

............................................................

In exercises 17–22, identify functions f (x), g(x) and h(x) such
that the given function equals [f ◦ (g ◦ h)] (x).

17. 3√
sin x + 2

18.
√

e4x + 1

19. cos3(4x − 2) 20. ln
√

x2 + 1

21. 4ex2 − 5 22.
[
tan−1(3x + 1)

]2

............................................................

In exercises 23–30, use the graph of y = f (x) given in the figure
to graph the indicated function.

23. f (x) − 3 24. f (x + 2) 25. f (x − 3)

26. f (x) + 2 27. f (2x) 28. 3f (x)

29. −3f (x) + 2 30. 3f (x + 2)

x
2 4-2-4

2

-2

4

6

8

10

y

Graph for exercises 23–30

............................................................
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In exercises 31–38, use the graph of y = f (x) given in the figure
to graph the indicated function.

31. f (x − 4) 32. f (x + 3) 33. f (2x)

34. f (2x − 4) 35. f (3x + 3) 36. 3f (x)

37. 2f (x) − 4 38. 3f (x) + 3

-10

y

x
2 4-2-4

-5

5

10

Graph for exercises 31–38

............................................................

In exercises 39–44, complete the square and explain how to
transform the graph of y = x2 into the graph of the given
function.

39. f (x) = x2 + 2x + 1 40. f (x) = x2 − 4x + 4

41. f (x) = x2 + 2x + 4 42. f (x) = x2 − 4x + 2

43. f (x) = 2x2 + 4x + 4 44. f (x) = 3x2 − 6x + 2
............................................................
In exercises 45–48, graph the given function and compare to
the graph of y = x2 – 1.

45. f (x) = −2(x2 − 1)

46. f (x) = −3(x2 − 1)

47. f (x) = −3(x2 − 1) + 2

48. f (x) = −2(x2 − 1) − 1
............................................................
In exercises 49–52, graph the given function and compare to
the graph of y = (x − 1)2 − 1 = x2 − 2x.

49. f (x) = (−x)2 − 2(−x)

50. f (x) = −(−x)2 + 2(−x)

51. f (x) = (−x + 1)2 + 2(−x + 1)

52. f (x) = (−3x)2 − 2(−3x) − 3
............................................................
53. Based on exercises 45–48, state a rule for transforming the

graph of y = f (x) into the graph of y = cf (x) for c < 0.

54. Based on exercises 49–52, state a rule for transforming the
graph of y = f (x) into the graph of y = f (cx) for c < 0.

55. Sketch the graph of y = |x|3. Explain why the graph of
y = |x|3 is identical to that of y = x3 to the right of the
y-axis. For y = |x|3, describe how the graph to the left of

the y-axis compares to the graph to the right of the y-axis. In
general, describe how to draw the graph of y = f (|x|) given
the graph of y = f (x).

56. For y = x3, describe how the graph to the left of the y-
axis compares to the graph to the right of the y-axis. Show
that for f (x) = x3, we have f (−x) = −f (x). In general, if you
have the graph of y = f (x) to the right of the y-axis and
f (−x) = −f (x) for all x, describe how to graph y = f (x) to the
left of the y-axis.

57. Iterations of functions are important in a variety of
applications. To iterate f (x), start with an initial value
x0 and compute x1 = f (x0), x2 = f (x1), x3 = f (x2) and so
on. For example, with f (x) = cos x and x0 = 1, the ite-
rates are x1 = cos 1 ≈ 0.54, x2 = cos x1 ≈ cos 0.54 ≈ 0.86,
x3 ≈ cos 0.86 ≈ 0.65 and so on. Keep computing iterates
and show that they get closer and closer to 0.739085. Then
pick your own x0 (any number you like) and show that
the iterates with this new x0 also converge to 0.739085.

58. Referring to exercise 57, show that the iterates of a function
can be written as x1 = f (x0), x2 = f (f (x0)), x3 = f (f (f (x0)))
and so on. Graph y = cos (cos x), y = cos (cos (cos x)) and
y = cos (cos (cos (cos x))). The graphs should look more and
more like a horizontal line. Use the result of exercise 57 to
identify the limiting line.

59. Compute several iterates of f (x) = sin x (see exercise 57)
with a variety of starting values. What happens to the it-
erates in the long run?

60. Repeat exercise 59 for f (x) = x2.

61. In cases where the iterates of a function (see exercise 57)
repeat a single number, that number is called a fixed point.
Explain why any fixed point must be a solution of the equa-
tion f (x) = x. Find all fixed points of f (x) = cos x by solv-
ing the equation cos x = x. Compare your results to that of
exercise 57.

62. Find all fixed points of f (x) = sin x (see exercise 61). Com-
pare your results to those of exercise 59.

EXPLORATORY EXERCISES

1. You have explored how completing the square can trans-
form any quadratic function into the form y = a(x − d)2 +
e. We concluded that all parabolas with a > 0 look alike.
To see that the same statement is not true of cu-
bic polynomials, graph y = x3 and y = x3 − 3x. In this
exercise, you will use completing the cube to deter-
mine how many different cubic graphs there are. To
see what “completing the cube” would look like, first
show that (x + a)3 = x3 + 3ax2 + 3a2x + a3. Use this result
to transform the graph of y = x3 into the graphs of
(a) y = x3 − 3x2 + 3x − 1 and (b) y = x3 − 3x2 + 3x + 2.
Show that you can’t get a simple transformation to y = x3 −
3x2 + 4x − 2. However, show that y = x3 − 3x2 + 4x − 2
can be obtained from y = x3 + x by basic transformations.
Show that the following statement is true: any cubic

58 | Lesson 1-5 | Transformations of Functions



C
op

yr
ig

ht
 ©

 M
cG

ra
w

-H
ill

 E
du

ca
ti

on
 

P1: NAI/NAI P2: NAI/NAI QC: NAI/NAI T1: NAI

UAE_Math_Grade_12_Vol_1_SE_718383_ch0 GO01962-Smith-v1.cls July 4, 2016 13:26

(y = ax3 + bx2 + cx + d) can be obtained with basic transfor-
mations from y = ax3 + kx for some constant k.

2. In many applications, it is important to take a section of
a graph (e.g., some data) and extend it for predictions or
other analysis. For example, suppose you have an elec-
tronic signal equal to f (x) = 2x for 0 ≤ x ≤ 2. To predict
the value of the signal at x = −1, you would want to know
whether the signal was periodic. If the signal is periodic,
explain why f (−1) = 2 would be a good prediction. In some
applications, you would assume that the function is
even. That is, f (x) = f (−x) for all x. In this case, you want
f (x) = 2(−x) = −2x for −2≤ x≤ 0. Graph the even extension

f (x) =
{
−2x if −2 ≤ x ≤ 0
2x if 0 ≤ x ≤ 2

.

Find the even extension for (a) f (x) = x2 + 2x + 1, 0 ≤ x ≤ 2
and (b) f (x) = e−x, 0 ≤ x ≤ 2.

3. Similar to the even extension discussed in exploratory
exercise 2, applications sometimes require a function to
be odd; that is, f (−x) = −f (x). For f (x) = x2, 0 ≤ x ≤ 2, the
odd extension requires that for −2 ≤ x ≤ 0, f (x) = −f (−x) =

−(−x)2 = −x2 so that f (x) =
{

−x2 if −2 ≤ x ≤ 0
x2 if 0 ≤ x ≤ 2

. Graph

y = f (x) and discuss how to graphically rotate the right
half of the graph to get the left half of the graph. Find
the odd extension for (a) f (x) = x2 + 2x, 0 ≤ x ≤ 2 and
(b) f (x) = e−x − 1, 0 ≤ x ≤ 2.

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems
that are stated in this chapter. For each term or theorem, (1) give
a precise definition or statement, (2) state in general terms what
it means and (3) describe the types of problems with which it is
associated.

Slope of a line Parallel lines Perpendicular lines
Domain Intercepts Zeros of a function
Graphing window Local maximum Vertical asymptote
Inverse function One-to-one function Periodic function
Sine function Cosine function Arcsine function
e Exponential function Logarithm
Composition

TRUE OR FALSE

State whether each statement is true or false and briefly explain
why. If the statement is false, try to “fix it” by modifying the given
statement to a new statement that is true.

1. For a graph, you can compute the slope using any two
points and get the same value.

2. All graphs must pass the vertical line test.

3. A cubic function has a graph with one local maximum and
one local minimum.

4. If a function has no local maximum or minimum, then it is
one-to-one.

5. The graph of the inverse of f can be obtained by reflecting
the graph of f across the diagonal y = x.

6. If f is a trigonometric function, then the solution of the
equation f (x) = 1 is f−1(1).

7. Exponential and logarithmic functions are inverses of each
other.

8. All quadratic functions have graphs that look like the
parabola y = x2.

In exercises 1 and 2, find the slope of the line through the given
points.

1. (2, 3), (0, 7)

2. (1, 4), (3, 1)
............................................................

In exercises 3 and 4, determine whether the lines are parallel,
perpendicular or neither.

3. y = 3x + 1 and y = 3(x − 2) + 4

4. y = −2(x + 1) − 1 and y = 1
2
x + 2

............................................................

5. Determine whether the points (1, 2), (2, 4) and (0, 6) form
the vertices of a right triangle.

6. The data represent populations at various times. Plot the
points, discuss any patterns and predict the population at
the next time: (0, 2100), (1, 3050), (2, 4100) and (3, 5050).

7. Find an equation of the line through the points indicated in
the graph that follows and compute the y-coordinate corre-
sponding to x = 4.

y

x
2 4 6

2

4

8. For f (x) = x2 − 3x − 4, compute f (0), f (2) and f (4).
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1-55 CHAPTER 1 • • Review Exercises 55

Review Exercises

In exercises 9 and 10, find an equation of the line with given
slope and point.

9. m = − 1
3
, (−1,−1) 10. m = 1

4
, (0, 2)

............................................................
In exercises 11 and 12, use the vertical line test to determine
whether the curve is the graph of a function.

11. y

x

12.

y

x

............................................................

In exercises 13 and 14, find the domain of the given function.

13. f (x) =
√

4 − x2 14. f (x) = x − 2
x2 − 2

............................................................

In exercises 15–28, sketch a graph of the function showing ex-
trema, intercepts and asymptotes.

15. f (x) = x2 + 2x − 8 16. f (x) = x3 − 6x + 1

17. f (x) = x4 − 2x2 + 1 18. f (x) = x5 − 4x3 + x − 1

19. f (x) = 4x
x + 2

20. f (x) = x − 2
x2 − x − 2

21. f (x) = sin 3x 22. f (x) = tan 4x

23. f (x) = sin x + 2 cos x 24. f (x) = sec 2x

25. f (x) = 4e2x 26. f (x) = 3e−4x

27. f (x) = ln 3x 28. f (x) = eln 2x

............................................................

29. Determine all intercepts of y = x2 + 2x − 8 (see exercise 15).

30. Determineall interceptsofy = x4 − 2x2 + 1 (seeexercise17).

31. Find all vertical asymptotes of y = 4x
x + 2

.

32. Find all vertical asymptotes of y = x − 2
x2 − x − 2

.

In exercises 33–36, find or estimate all zeros of the given
function.

33. f (x) = x2 − 3x − 10 34. f (x) = x3 + 4x2 + 3x

35. f (x) = x3 − 3x2 + 2 36. f (x) = x4 − 3x − 2

............................................................

In exercises 37 and 38, determine the number of solutions.

37. sin x = x3

38.
√

x2 + 1 = x2 − 1

............................................................

39. A surveyor stands 50 ft from a telephone pole and measures
an angle of 34◦ to the top. How tall is the pole?

40. Find sin 𝜃𝜃 given that 0 < 𝜃𝜃 𝜃 𝜋𝜋
2

and cos 𝜃𝜃 = 1
5
.

41. Convert to fractional or root form: (a) 5−1∕2 (b) 3−2.

42. Convert to exponential form: (a) 2√
x

(b) 3
x2

.

43. Rewrite ln 8 − 2 ln 2 as a single logarithm.

44. Solve the equation for x: eln 4x = 8.

In exercises 45 and 46, solve the equation for x.

45. 3e2x = 8 46. 2 ln 3x = 5

............................................................

In exercises 47 and 48, find f ◦ g and g ◦ f , and identify their
respective domains.

47. f (x) = x2, g(x) =
√

x − 1

48. f (x) = x2, g(x) = 1
x2 − 1

............................................................
In exercises 49 and 50, identify functions f (x) and g(x) such that
(f◦g)(x) equals the given function.

49. e3x2+2 50.
√
sin x + 2

............................................................

In exercises 51 and 52, complete the square and explain how
to transform the graph of y = x2 into the graph of the given
function.

51. f (x) = x2 − 4x + 1 52. f (x) = x2 + 4x + 6

............................................................

60 | Lesson 1-5 | Transformations of Functions
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56 CHAPTER 1 • • Preliminaries 1-56

Review Exercises

In exercises 53–56, determine whether the function is one-to-
one. If so, find its inverse.

53. x3 − 1 54. e−4x 55. e2x2 56. x3 − 2x + 1

............................................................
In exercises 57–60, graph the inverse without solving for the
inverse.

57. x5 + 2x3 − 1 58. x3 + 5x + 2

59.
√

x3 + 4x 60. ex3+2x

............................................................
In exercises 61–64, evaluate the quantity using the unit circle.

61. sin−1 1 62. cos−1
(
− 1

2

)

63. tan−1(−1) 64. csc−1(−2)
............................................................
In exercises 65–68, simplify the expression.

65. sin(sec−1 2) 66. tan(cos−1(4∕5))

67. sin−1(sin(3𝜋𝜋∕4)) 68. cos−1(sin(−𝜋𝜋∕4))

In exercises 69 and 70, find all solutions of the equation.

69. sin 2x = 1 70. cos 3x = 1
2

............................................................

EXPLORATORY EXERCISES

1. Sketch a graph of any function y = f (x) that has an in-
verse. (Your choice.) Sketch the graph of the inverse func-
tion y = f−1(x). Then sketch the graph of y = g(x) = f (x + 2).
Sketch the graph of y = g−1(x), and use the graph to deter-
mine a formula for g−1(x) in terms of f−1(x). Repeat this for
h(x) = f (x) + 3 and k(x) = f (x − 4) + 5.

2. In tennis, a serve must clear the net and then land inside of
a box drawn on the other side of the net. In this exercise,
you will explore the margin of error for successfully serving.

First, consider a straight serve (this essentially means a
serve hit infinitely hard) struck 9 ft above the ground. Call
the starting point (0, 9). The back of the service box is 60 ft
away, at (60, 0). The top of the net is 3 ft above the ground
and 39 ft from the server, at (39, 3). Find the service an-
gle 𝜃𝜃 (i.e., the angle as measured from the horizontal) for
the triangle formed by the points (0, 9), (0, 0) and (60, 0).
Of course, most serves curve down due to gravity. Ignor-
ing air resistance, the path of the ball struck at angle 𝜃𝜃 and

initial speed v ft/s is y = − 16
(v cos 𝜃𝜃)2

x2 − (tan 𝜃𝜃)x + 9. To hit

the back of the service line, you need y = 0 when x = 60.
Substitute in these values along with v = 120. Multiply by
cos2 𝜃𝜃 and replace sin 𝜃𝜃 with

√
1 − cos2 𝜃𝜃. Replacing cos 𝜃𝜃

with z gives you an algebraic equation in z. Numerically es-
timate z. Similarly, substitute x = 39 and y = 3 and find an
equation for w = cos 𝜃𝜃. Numerically estimate w. The margin
of error for the serve is given by cos−1 z < 𝜃𝜃 𝜃 cos−1 w.

9

60

θ

3

3. Baseball players often say that an unusually fast pitch rises
or even hops up as it reaches the plate. One explana-
tion of this illusion involves the players’ inability to track
the ball all the way to the plate. The player must compen-
sate by predicting where the ball will be when it reaches
the plate. Suppose the height of a pitch when it reaches
home plate is h = −(240∕v)2 + 6 ft for a pitch with velocity
v ft/s. (This equation takes into consideration gravity but
not air resistance.) Halfway to the plate, the height would
be h = −(120∕v)2 + 6 ft. Compare the halfway heights for
pitches with v = 132 and v = 139 (about 90 and 95 mi/h,
respectively). Would a batter be able to tell much differ-
ence between them? Now compare the heights at the plate.
Why might the batter think that the faster pitch hopped
up right at the plate? How many inches did the faster
pitch hop?
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In exercises 53–56, determine whether the function is one-to-
one. If so, find its inverse.

53. x3 − 1 54. e−4x 55. e2x2 56. x3 − 2x + 1

............................................................
In exercises 57–60, graph the inverse without solving for the
inverse.

57. x5 + 2x3 − 1 58. x3 + 5x + 2

59.
√

x3 + 4x 60. ex3+2x

............................................................
In exercises 61–64, evaluate the quantity using the unit circle.

61. sin−1 1 62. cos−1
(
− 1

2

)

63. tan−1(−1) 64. csc−1(−2)
............................................................
In exercises 65–68, simplify the expression.

65. sin(sec−1 2) 66. tan(cos−1(4∕5))

67. sin−1(sin(3𝜋𝜋∕4)) 68. cos−1(sin(−𝜋𝜋∕4))

In exercises 69 and 70, find all solutions of the equation.

69. sin 2x = 1 70. cos 3x = 1
2

............................................................

EXPLORATORY EXERCISES

1. Sketch a graph of any function y = f (x) that has an in-
verse. (Your choice.) Sketch the graph of the inverse func-
tion y = f−1(x). Then sketch the graph of y = g(x) = f (x + 2).
Sketch the graph of y = g−1(x), and use the graph to deter-
mine a formula for g−1(x) in terms of f−1(x). Repeat this for
h(x) = f (x) + 3 and k(x) = f (x − 4) + 5.

2. In tennis, a serve must clear the net and then land inside of
a box drawn on the other side of the net. In this exercise,
you will explore the margin of error for successfully serving.

First, consider a straight serve (this essentially means a
serve hit infinitely hard) struck 9 feet above the ground.
Call the starting point (0, 9). The back of the service box
is 60 feet away, at (60, 0). The top of the net is 3 feet above
the ground and 39 feet from the server, at (39, 3). Find the
service angle 𝜃𝜃 (i.e., the angle as measured from the hori-
zontal) for the triangle formed by the points (0, 9), (0, 0) and
(60, 0). Of course, most serves curve down due to gravity.
Ignoring air resistance, the path of the ball struck at angle 𝜃𝜃

and initial speed v ft/s is y = − 16
(v cos 𝜃𝜃)2

x2 − (tan 𝜃𝜃)x + 9. To

hit the back of the service line, you need y = 0 when x = 60.
Substitute in these values along with v = 120. Multiply by
cos2 𝜃𝜃 and replace sin 𝜃𝜃 with

√
1 − cos2 𝜃𝜃. Replacing cos 𝜃𝜃

with z gives you an algebraic equation in z. Numerically es-
timate z. Similarly, substitute x = 39 and y = 3 and find an
equation for w = cos 𝜃𝜃. Numerically estimate w. The margin
of error for the serve is given by cos−1 z < 𝜃𝜃 𝜃 cos−1 w.

9

60

θ

3

3. Baseball players often say that an unusually fast pitch rises
or even hops up as it reaches the plate. One explana-
tion of this illusion involves the players’ inability to track
the ball all the way to the plate. The player must compen-
sate by predicting where the ball will be when it reaches
the plate. Suppose the height of a pitch when it reaches
home plate is h = −(240∕v)2 + 6 feet for a pitch with veloc-
ity v ft/s. (This equation takes into consideration gravity but
not air resistance.) Halfway to the plate, the height would
be h = −(120∕v)2 + 6 feet. Compare the halfway heights for
pitches with v = 132 and v = 139 (about 90 and 95 mph,
respectively). Would a batter be able to tell much differ-
ence between them? Now compare the heights at the plate.
Why might the batter think that the faster pitch hopped
up right at the plate? How many inches did the faster
pitch hop?
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