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Preliminaries of Calculus
B

In this chapter, we present a collection of familiar topics, primarily those that we con-
sider essential for the study of calculus. While we do not intend this chapter to be a
comprehensive review of precalculus mathematics, we have tried to hit the highlights
and provide you with some standard notation and language that we will use throughout
the text.

As it grows, a chambered nautilus creates a spiral shell. Behind this beautiful
geometry is a surprising amount of mathematics. The nautilus grows in such a way that
the overall proportions of its shell remain constant. That is, if you draw a rectangle to
circumscribe the shell, the ratio of height to width of the rectangle remains nearly
constant.

There are several ways to represent this property mathematically. In polar coordi-
nates, we study logarithmic spirals that have the property that the angle of growth is
constant, corresponding to the constant proportions of a nautilus shell. Using basic
geometry, you can divide the circumscribing rectangle into a sequence of squares as in
the figure. The relative sizes of the squares form the famous Fibonacci sequence 1, 1, 2, 3,
5,8, ..., where each number in the sequence is the sum of the preceding two numbers.
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The Fibonacci sequence has an amazing list of interesting properties. (Search on
the Internet to see what we mean!) Numbers in the sequence have a surprising habit of
showing up in nature, such as the number of petals on a lily (3), buttercup (5), marigold
(13), and pyrethrum (34). Although we have a very simple description of how to generate
the Fibonacci sequence, think about how you might describe it as a function. A plot of
the first several numbers in the sequence (shown in Figure 1.1 on the following page)
should give you the impression of a graph curving up, perhaps a parabola or an exponen-
tial curve.

Two aspects of this problem are important themes
throughout the calculus. One of these is the importance
of looking for patterns to help us better describe the
world. A second theme is the interplay between graphs
and functions. By connecting the techniques of algebra
with the visual images provided by graphs, you will
significantly improve your ability to solve real-world
problems mathematically.

A nautilus shell
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FIGURE 1.1

The Fibonacci sequence
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Polynomials and Rational Functions

The Real Number System and Inequalities

Our journey into calculus begins with the real number system, focusing on those prop-
erties that are of particular interest for calculus.
The set of integers consists of the whole numbers and their additive inverses:

0, +£1, +2, +3,.... A rational number is any number of the form E, where p and g
are integers and g # 0. For example, %, —% and % are all rational numbers. Notice

that every integer n is also a rational number, since we can write it as the quotient of
; n

two integers: n = 1
The irrational numbers are all those real numbers that cannot be written in the

form —, where p and g are integers. Recall that rational numbers have decimal ex-
pansions that either terminate or repeat. For instance, % =0.5, % = 0.33333, % =0.125
and 1 = 0.166666 are all rational numbers. By contrast, irrational numbers have deci-
mal expansions that do not repeat or terminate. For instance, three familiar irrational

numbers and their decimal expansions are

V2 = 1.4142135623. . .,

m = 3.1415926535. ..
and e=27182818284....

We picture the real numbers arranged along the number line displayed in Figure 1.2
(the real line). The set of real numbers is denoted by the symbol R.

FIGURE 1.2

The real line
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An open interval

For real numbers 2 and b, where a < b, we define the closed interval [g, b] to be the
set of numbers between a and b, including a and b (the endpoints). That is,

[a,b]={xeR|a<x<Db]

as illustrated in Figure 1.3, where the solid circles indicate that 2 and b are included in
[a, b].

Similarly, the open interval (g, b) is the set of numbers between a and b, but not
including the endpoints a and b, that is,

(ab)={xeR|a<x<b}

as illustrated in Figure 1.4, where the open circles indicate that 2 and b are not included
in (g, b). Similarly, we denote the set {x € R | x > a} by the interval notation (1, c0) and
{x € R | x < a} by (—o0, a). In both of these cases, it is important to recognize that co
and —oo are not real numbers and we are using this notation as a convenience.

You should already be very familiar with the following properties of real numbers.

THEOREM 1.1

If @ and b are real numbers and a < b, then

(i) For any real number ¢,a+c < b+c.

(ii) For real numbers cand d, if c < d, thena+c< b+ d.
(iii) For any real numberc¢> 0,a-c<b-c.
(iv) For any real numberc < 0,a-c>b-c.

REMARK 11

We need the properties given in Theorem 1.1 to solve inequalities. Notice that

(i) says that you can add the same quantity to both sides of an inequality. Part (iii)
says that you can multiply both sides of an inequality by a positive number.
Finally, (iv) says that if you multiply both sides of an inequality by a negative
number, the inequality is reversed.

We illustrate the use of Theorem 1.1 by solving a simple inequality.

EXAMPLE 1.1 Solving a Linear Inequality
Solve the linear inequality 2x + 5 < 13.

Solution We can use the properties in Theorem 1.1 to solve for x. Subtracting 5 from
both sides, we obtain

Qx+5)-5<13-5

or 2x < 8.

Dividing both sides by 2, we obtain

x<4.
We often write the solution of an inequality in interval notation. In this case, we get
the interval (—co, 4). m

You can deal with more complicated inequalities in the same way.
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EXAMPLE 1.2 Solving a Two-Sided Inequality
Solve the two-sided inequality 6 < 1 — 3x < 10.

Solution  First, recognize that this problem requires that we find values of x
such that

6<1-3x and 1-3x<10.

It is most efficient to work with both inequalities simultaneously. First, subtract 1
from each term, to get

6-1<(1-3x)-1<10-1
or 5<-3x<09.

Now, divide by —3, but be careful. Since —3 < 0, the inequalities are reversed.
We have

5 -3x _ 9
-3 -3 3
5
or —5 > x> 3.
We usually write this as -3<x< —g,

. . 5
or in interval notation as [—3, —5). |

You will often need to solve inequalities involving fractions. We present a typical
example in the following.

EXAMPLE 1.3 Solving an Inequality Involving a Fraction
-1
Solve the inequality ~— > 0.
olve e1nequa1yx+2 >

Solution In Figure 1.5, we show a graph of the function, which appears to indicate
that the solution includes all x < —2 and x > 1. Carefully read the inequality and
observe that there are only three ways to satisfy this: either both numerator and
denominator are positive, both are negative or the numerator is zero. To visualize
this, we draw number lines for each of the individual terms, indicating where each
is positive, negative or zero and use these to draw a third number line indicating
the value of the quotient, as shown in the margin. In the third number line, we have
placed an “X” above the —2 to indicate that the quotient is undefined at x = —2.
From this last number line, you can see that the quotient is nonnegative whenever
x < =2 or x > 1. We write the solution in interval notation as (—oo0, —2) U [1, 00).
Note that this solution is consistent with what we see in Figure1.5. m |

For inequalities involving a polynomial of degree 2 or higher, factoring the poly-
nomial and determining where the individual factors are positive and negative, as in
example 1.4, will lead to a solution.

EXAMPLE 1.4 Solving a Quadratic Inequality

Solve the quadratic inequality

X +x—6>0. (1.1)

6 | Lesson 1-1 | Polynomials and Rational Functions
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For any two real numbers a and b,
|a — b| gives the distance between
aandb. (See Figure 1.7.)
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FIGURE 1.7
The distance between a and b
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FIGURE 1.8
lx—2|<5

Solution In Figure 1.6, we show a graph of the polynomial on the left side of the
inequality. Since this polynomial factors, (1.1) is equivalent to

(x+3)(x—2) > 0. (1.2)

This can happen in only two ways: when both factors are positive or when both
factors are negative. As in example 1.3, we draw number lines for both of the
individual factors, indicating where each is positive, negative or zero and use these

to draw a number line representing the product. We show these in the margin.
Notice that the third number line indicates that the product is positive whenever

x < =3 or x > 2. We write this in interval notation as (—o0, =3) U (2, 00). ®m_ |

No doubt, you will recall the following standard definition.

DEFINITION 1.1
X; ifx>0

The absolute value of a real number x is |x] = { Zv ifr<0

Make certain that you read Definition 1.1 correctly. If x is negative, then —x is
positive. This says that |x| > 0 for all real numbers x. For instance, using the definition,

[—4] = —(-4) =4.
Notice that for any real numbers a and b,

la-bl = lal -[0],
although
la+0| # |al +b],

in general. (To verify this, simply take 2 = 5 and b = —2 and compute both quantities.)
However, it is always true that

la+0b] < |a| + 0]

This is referred to as the triangle inequality.

The interpretation of |a — b| as the distance between a and b (see the note in the
margin) is particularly useful for solving inequalities involving absolute values. Wher-
ever possible, we suggest that you use this interpretation to read what the inequality
means, rather than merely following a procedure to produce a solution.

EXAMPLE 1.5 Solving an Inequality Containing an Absolute Value

Solve the inequality
lx—2] <5. (1.3)

Solution First, take a few moments to read what this inequality says. Since |x — 2|
gives the distance from x to 2, (1.3) says that the distance from x to 2 must be less

than 5. So, find all numbers x whose distance from 2 is less than 5. We indicate the
set of all numbers within a distance 5 of 2 in Figure 1.8. You can now read the
solution directly from the figure: —3 < x < 7 or in interval notation: (-3,7). m____|

Many inequalities involving absolute values can be solved simply by reading the
inequality correctly, as in example 1.6.
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: Year U.S. Population

1960 179,323,175
1970 203,302,031
1980 226,542,203
1990 248,709,873
2 y
0 179
10 203
20 227
30 249

Transformed data

EXAMPLE 1.6 Solving an Inequality with a Sum Inside an Absolute
Value

Solve the inequality
[x+4|<7. (1.4)

Solution To use our distance interpretation, we must first rewrite (1.4) as

lx—(=4)|<7.

This now says that the distance from x to —4 is less than or equal to 7. We illustrate
the solution in Figure 1.9, from which it follows that —-11 <x <3 or [-11,3]. m |

Recall that for any real number r > 0, |x| < r is equivalent to the following inequal-
ity not involving absolute values:

—r<x<tr.

In example 1.7, we use this to revisit the inequality from example 1.5.

EXAMPLE 1.7 An Alternative Method for Solving Inequalities
Solve the inequality |x — 2| < 5.
Solution This is equivalent to the two-sided inequality
-5<x-2<5.
Adding 2 to each term, we get the solution

-3<x<7,

or in interval notation (-3, 7), as before. m

Recall that the distance between two points (x1, ;) and (x,, y,) is a simple conse-
quence of the Pythagorean Theorem and is given by

a1, 10), (e y2)) = 3/ = 31)2 + (3 — )2

We illustrate this in Figure 1.10.

EXAMPLE 1.8 Using the Distance Formula
Find the distance between the points (1, 2) and (3, 4).
Solution The distance between (1, 2) and (3, 4) is

d(1,2),3,4}=VB-12+@-22=V4+4=18.

Equations of Lines

The federal government conducts a nationwide census every 10 years to determine the
population. Population data for several recent decades are shown in the accompanying
table.

One difficulty with analyzing these data is that the numbers are so large. This prob-
lem is remedied by transforming the data. We can simplify the year data by defining
x to be the number of years since 1960, so that 1960 corresponds to x = 0, 1970 cor-
responds to x = 10 and so on. The population data can be simplified by rounding the
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Population data

numbers to the nearest million. The transformed data are shown in the accompanying
table and a scatter plot of these data points is shown in Figure 1.11.

The points in Figure 1.11 may appear to form a straight line. (Use a ruler and see if
you agree.) To determine whether the points are, in fact, on the same line (such points
are called colinear), we might consider the population growth in each of the indicated
decades. From 1960 to 1970, the growth was 24 million. (That is, to move from the
first point to the second, you increase x by 10 and increase y by 24.) Likewise, from
1970 to 1980, the growth was 24 million. However, from 1980 to 1990, the growth was
only 22 million. Since the rate of growth is not constant, the data points do not fall on
a line. This argument involves the familiar concept of slope.

DEFINITION 1.2

For x; # x,, the slope of the straight line through the points (x;, y1) and (x,, y5) is
the number
Y2-%

m=——-.

Xy — X1

(1.5)

When x; = x, and y; # y,, the line through (x;, y1) and (x,, y,) is vertical and the
slope is undefined.

We often describe slope as “the change in y divided by the change in x,” written
A .
A—z, or more simply as %. (See Figure 1.12a.)

Referring to Figure 1.12b (where the line has positive slope), notice that for any four
points A, B, D and E on the line, the two right triangles AABC and ADEF are similar.
Recall that for similar triangles, the ratios of corresponding sides must be the same. In
this case, this says that

Ay Ay’
Ax ~ Ax’

Yy
“ (w2, y2)
Yo rveremrrer e >
(AY =y~ y
= Rise
(21, yp)
yl [ PR ‘ ;
Aw =y =y
: = Run
2 M >
FIGURE 1.12a FIGURE 1.12b
Slope Similar triangles and slope

and so, the slope is the same no matter which two points on the line are selected. Notice
that a line is horizontal if and only if its slope is zero.
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Using slope to find a second point

EXAMPLE 1.9 Finding the Slope of a Line
Find the slope of the line through the points (4, 3) and (2, 5).
Solution From (1.5), we get

Yo— 1 3= 2

m="=—"="_""= "=

5_
Xo—x; 2-4 =2 |

EXAMPLE 1.10 Using Slope to Determine if Points Are Colinear
Use slope to determine whether the points (1, 2), (3, 10) and (4, 14) are colinear.
Solution  First, notice that the slope of the line joining (1, 2) and (3, 10) is

/ _y2_y1_10—2_§:4.

e Xy—x; 3-1
Similarly, the slope through the line joining (3, 10) and (4, 14) is

2= _14—10_4
Xy — Xq 4-3 ’

my =

Since the slopes are the same, the points must be colinear. m

Recall that if you know the slope and a point through which the line must pass,
you have enough information to graph the line. The easiest way to graph a line is to
plot two points and then draw the line through them. In this case, you need only to
find a second point.

EXAMPLE 1.11 Graphing a Line

If a line passes through the point (2, 1) with slope 3, find a second point on the line
and then graph the line.

Solution  Since slope is given by m = 270 , we take m = %, yp=1landx; =2,
Y2~ X
to obtain
2 _ -1
3 Xy — 2 '

You are free to choose the x-coordinate of the second point. For instance, to find the
point at x, = 5, substitute this in and solve. From

2 _ -1 _yp-1

S amba=r’’ 3 7

we get 2 =y, — 1 or y, = 3. A second point is then (5, 3). The graph of the line is
shown in Figure 1.13a. An alternative method for finding a second point is to use
the slope

3 Ax
The slope of 2 says that if we move three units to the right, we must move two units
up to stay on the line, as illustrated in Figure 1.13b. m

In example 1.11, the choice of x = 5 was entirely arbitrary; you can choose any
x-value you want to find a second point. Further, since x can be any real number, you can
leave x as a variable and write out an equation satisfied by any point (x, ) on the line.

10 | Lesson 1-1 | Polynomials and Rational Functions
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FIGURE 1.14
y=-2(x-3)+1

In the general case of the line through the point (x, i) with slope m, we have from
(1.5) that

Y—Yo

m= . (1.6)
X — X
Multiplying both sides of (1.6) by (x — x;), we get
Y= Yo = mlx = X)
or
POINT-SLOPE FORM OF A LINE
v = mx—x,) + o, (1.7)

Equation (1.7) is called the point-slope form of the line.

EXAMPLE 1.12 Finding the Equation of a Line Given Two Points
Find an equation of the line through the points (3, 1) and (4, —1), and graph the line.

Solution From (1.5), the slope is m = _41 _31 = _Tz = —2. Using (1.7) with slope
m = =2, x-coordinate x, = 3 and y-coordinate y, = 1, we get the equation of the line:
y=-2(x-3)+1. (1.8)

To graph the line, plot the points (3, 1) and (4, —1), and you can easily draw the line
seen in Figure 1.14. m

Although the point-slope form of the equation is often the most convenient to
work with, the slope-intercept form is sometimes more convenient. This has the
form

y=mx+b,

where m is the slope and b is the y-intercept (i.e., the place where the graph crosses the
y-axis). In example 1.12, you simply multiply out (1.8) to gety = —2x+ 6+ 1 or

y=-2x+7.

As you can see from Figure 1.14, the graph crosses the y-axisaty = 7.
Theorem 1.2 presents a familiar result on parallel and perpendicular lines.

THEOREM 1.2

Two (nonvertical) lines are parallel if they have the same slope. Further, any two
vertical lines are parallel. Two (nonvertical) lines of slope m, and m, are
perpendicular whenever the product of their slopes is —1 (i.e., my - m, = —1).
Also, any vertical line and any horizontal line are perpendicular.

Since we can read the slope from the equation of a line, it’s a simple matter
to determine when two lines are parallel or perpendicular. We illustrate this in
examples 1.13 and 1.14.

1"
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Parallel lines

FIGURE 1.16

Perpendicular lines
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FIGURE 1.17

Population

EXAMPLE 1.13 Finding the Equation of a Parallel Line
Find an equation of the line parallel to y = 3x — 2 and through the point (-1, 3).

Solution It’s easy to read the slope of the line from the equation: m = 3. The
equation of the parallel line is then

y=3[x—(-1)]+3

or simply y = 3x 4+ 6. We show a graph of both lines in Figure 1.15. m____ |

EXAMPLE 1.14 Finding the Equation of a Perpendicular Line

Find an equation of the line perpendicular to y = —2x + 4 and intersecting the line
at the point (1, 2).

Solution The slope of y = —2x + 4 is —2. The slope of the perpendicular line is
then —1/(-2) = % Since the line must pass through the point (1, 2), the equation of
the perpendicular line is

y:%(x—l)+2 or y:%x+%.

We show a graph of the two lines in Figure 1.16. m

We now return to this subsection’s introductory example and use the equation of
a line to estimate the population in the year 2000.

EXAMPLE 1.15 Using a Line to Predict Population

From the population data for the census years 1960, 1970, 1980 and 1990 given in
example 1.8, predict the population for the year 2000.

Solution  We began this subsection by showing that the points in the
corresponding table are not colinear. Nonetheless, they are nearly colinear. So, why
not use the straight line connecting the last two points (20, 227) and (30, 249)
(corresponding to the populations in the years 1980 and 1990) to predict the
population in 2000? (This is a simple example of a more general procedure called
extrapolation.) The slope of the line joining the two data points is

_249-227 22 11

30-20 10 5
The equation of the line is then

y= %(x— 30) + 249.

See Figure 1.17 for a graph of the line. If we follow this line to the point
corresponding to x = 40 (the year 2000), we have the predicted population

%(40 — 30) + 249 = 271.

That is, the predicted population is 271 million people. The actual census figure for
2000 was 281 million, which indicates that the U.S. population grew at a faster rate
between 1990 and 2000 than in the previous decade. m

Functions

For any two subsets A and B of the real line, we make the following familiar definition.

12 | Lesson 1-1 | Polynomials and Rational Functions
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REMARK 1.2

Functions can be defined by
simple formulas, such as

f(x) = 3x + 2, but in general,
any correspondence meeting
the requirement of matching
exactly one y to each x defines
a function.

»
»

e

FIGURE 1.19a

Curve fails vertical line test

FIGURE 1.19b

Curve passes vertical line test

DEFINITION 1.3

A function f is a rule that assigns exactly one element y in a set B to each element
x in a set A. In this case, we write y = f(x).

We call the set A the domain of f. The set of all values f(x) in B is called the
range of f, written {y | y = f(x), for some x € A}. Unless explicitly stated
otherwise, whenever a function f is given by a particular expression, the domain
of f is the largest set of real numbers for which the expression is defined. We
refer to x as the independent variable and to y as the dependent variable.

By the graph of a function f, we mean the graph of the equation y = f(x). That
is, the graph consists of all points (x, y), where x is in the domain of f and where
y=f).

Notice that not every curve is the graph of a function, since for a function, only one
y-value can correspond to a given value of x. You can graphically determine whether
a curve is the graph of a function by using the vertical line test: if any vertical line
intersects the graph in more than one point, the curve is not the graph of a function,
since in this case, there are two y-values for a given value of x.

EXAMPLE 1.16 Using the Vertical Line Test

Determine which of the curves in Figures 1.18a and 1.18b correspond to functions.

1._
;x | /\ /\
t —» 2
2

05\ 1

FIGURE 1.18a FIGURE 1.18b

Solution Notice that the circle in Figure 1.18a is not the graph of a function, since
a vertical line at x = 0.5 intersects the circle twice. (See Figure 1.19a.) The graph in
Figure 1.18b is the graph of a function, even though it swings up and down
repeatedly. Although horizontal lines intersect the graph repeatedly, vertical lines,

such as the one at x = 1.2, intersect only once. (See Figure 1.19b.) m

The functionswithwhichyouare probablymostfamiliarare polynomials. Thesearethe
simplest functions to work with because they are defined entirely in terms of arithmetic.

DEFINITION 1.4
A polynomial is any function that can be written in the form

1

fO) =ax"+a, X"+ - - +ax+ag,

where 4y, a4, a,, , a, are real numbers (the coefficients of the polynomial) with
a, # 0 and n > 0 is an integer (the degree of the polynomial).

13



Note that every polynomial function can be defined for all x’s on the entire real
line. Further, recognize that the graph of the linear (degree 1) polynomial f(x) = ax + b
is a straight line.

EXAMPLE 1.17 Sample Polynomials

The following are all examples of polynomials:

and

(
(
f(x) = 5x* — 2x + 2/3 (polynomial of degree 2 or quadratic polynomial),
(x) = x* — 2x + 1 (polynomial of degree 3 or cubic polynomial),

(

x) = —6x* + 12x? — 3x + 13 (polynomial of degree 4 or quartic polynomial),

f(x) = 2x° + 6x* — 8% + x — 3 (polynomial of degree 5 or quintic polynomial).

We show graphs of these six functions in Figures 1.20a-1.20f.

Yy Yy
15+ 120+
Yy 10+
3‘ 5+ 80+
L — e e
2 4
—5 40+
1T —10+
o 1T 542 | oz 4 6
FIGURE 1.20a FIGURE 1.20b FIGURE 1.20c
flx)=2 fl)=3x+2 f(x) =5x2 —2x+2/3
y y
A A
10 20 Y
A
54 10+ 207
A . : : : > 101
-3 -2/ -1 1 2 3 2| =1 1 2
—10+ —20+ /\{0"
FIGURE 1.20d FIGURE 1.20e FIGURE 1.20f

f)=x>-2x+1

flx) = —6x* +12x2 — 3x + 13

fx)=2x"+6x*—8x2+x-3
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DEFINITION 1.5

Any function that can be written in the form

where p and g are polynomials, is called a rational function.

Notice that since p(x) and g(x) are polynomials, they can both be defined for all x,

and so, the rational function f(x) = % can be defined for all x for which g(x) # 0.
x

EXAMPLE 118 A Sample Rational Function
Find the domain of the function

f)

X+ 7x-11
P-4

Solution Here, f(x) is a rational function. We show a graph in Figure 1.21. Its do-
main consists of those values of x for which the denominator is nonzero. Notice that
X —4=(x-2)(x+2)
and so, the denominator is zero if and only if x = +2. This says that the domain of f is

{xeR|x# +2} =(-00,-2) U(-2,2) U (2, 0). m

The square root function is defined in the usual way. When we write y = 1/x, we
mean that y is that number for which y*> = xand y > 0. In particular, V/4 = 2. Be careful

not to write erroneous statements such as \/Z = +2. In particular, be careful to write

V2 = |x.

Since V2 is asking for the nonnegative number whose square is x
|x| and not x. We can say

2 we are looking for

\/; =x, only forx > 0.

Similarly, for any integer 1 > 2, y = {/x whenever y" = x, where for 1 even, x > 0 and
y=0.

EXAMPLE 1.19 Finding the Domain of a Function Involving
a Square Root or a Cube Root

Find the domains of f(x) = V/x2 — 4 and g(x) = V2 — 4.

Solution  Since even roots are defined only for nonnegative values, f(x) is defined
only for x> — 4 > 0. Notice that this is equivalent to having x> > 4, which occurs
when x > 2 or x < —2. The domain of f is then (—oo, —2] U [2, o). On the other
hand, odd roots are defined for both positive and negative values. Consequently,
the domain of g is the entire real line, (—c0, 00). m

We often find it useful to label intercepts and other significant points on a graph.
Finding these points typically involves solving equations. A solution of the equation
f(x) = 01is called a zero of the function f or a root of the equation f(x) = 0. Notice that
a zero of the function f corresponds to an x-intercept of the graph of y = f(x).
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FIGURE 1.22
y=x*—4x+3

REMARK 1.3

Polynomials may also have
complex zeros. For instance,
f(x) = x* + 1 has only the
complex zeros x = +i, where i
is the imaginary number
defined by i = V=1. We
confine our attention in this
text to real zeros.

EXAMPLE 1.20 Finding Zeros by Factoring
Find all x- and y-intercepts of f(x) = x> — 4x + 3.
Solution To find the y-intercept, set x = 0 to obtain
y=0-0+3=3.
To find the x-intercepts, solve the equation f(x) = 0. In this case, we can factor to get

f(x)=x2—4x+3=(x—1)(x—3)=0.

You can now read off the zeros: x = 1 and x = 3, as indicated in Figure 1.22. |

Unfortunately, factoring is not always so easy. Of course, for the quadratic equation

ax’> +bx+c=0

(for a # 0), the solution(s) are given by the familiar quadratic formula:

—b+ Vb2 — dac

2a

X =

EXAMPLE 1.21 Finding Zeros Using the Quadratic Formula
Find the zeros of f(x) = x> — 5x — 12.

Solution You probably won't have much luck trying to factor this. However, from
the quadratic formula, we have

—~(=5)+V/(-5)2-4-1-(-12) 5+/25+48 51/73
= ==

2-1 2

X =

So, the two solutions are given by x = % + @ ~ 6.772 and x = g - @ ~ —=1.772.
(No wonder you couldn’t factor the polynomial!) |

Finding zeros of polynomials of degree higher than 2 and other functions is usually
trickier and is sometimes impossible. At the least, you can always find an approxima-
tion of any zero(s) by using a graph to zoom in closer to the point(s) where the graph
crosses the x-axis, as we’ll illustrate shortly. A more basic question, though, is to deter-
mine how many zeros a given function has. In general, there is no way to answer this
question without the use of calculus. For the case of polynomials, however, Theorem 1.3
(a consequence of the Fundamental Theorem of Algebra) provides a clue.

THEOREM 1.3

A polynomial of degree n has at most n distinct zeros.

Notice that Theorem 1.3 does not say how many zeros a given polynomial has, but
rather, that the maximum number of distinct (i.e., different) zeros is the same as the
degree. A polynomial of degree n may have anywhere from 0 to n distinct real zeros.
However, polynomials of odd degree must have at least one real zero. For instance,
for the case of a cubic polynomial, we have one of the three possibilities illustrated in
Figures 1.23a, 1.23b and 1.23c. These are the graphs of the functions.

fx) =2 -2x2 +3=(x+1)(x> —3x+3),
g0) =2 = —x+1=(x+1)(x— 1)

and hix) =x° =322 —x+3=(x+1)(x — 1)(x - 3),

16 | Lesson 1-1 | Polynomials and Rational Functions
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respectively. Note that you can see from the factored form where the zeros are (and
how many there are).

Y Yy Yy

A A A

. 4 > / \ >
ay Xy vy x'\/cg

>
Xy
FIGURE 1.23a FIGURE 1.23b FIGURE 1.23c
One zero Two zeros Three zeros
Y
A
4+ Theorem 1.4 provides an important connection between factors and zeros of poly-
1 nomials.
2
\ THEOREM 1.4 (Factor Theorem)
—— > For any polynomial function f, f(a) = 0 if and only if (x — 4) is a factor of f(x).
-2 [-1 1 2 3
—2+

EXAMPLE 1.22 Finding the Zeros of a Cubic Polynomial

FIGURE 1.24a Find the zeros of f(x) = x> — x2 — 2x + 2.
y=x>—x*-2x+2 .
Solution By calculating f(1), you can see that one zero of this function is x = 1, but

how many other zeros are there? A graph of the function (see Figure 1.24a) shows
that there are two other zeros of f, one near x = —1.5 and one near x = 1.5. You can
find these zeros more precisely by using your graphing calculator or computer
algebra system to zoom in on the locations of these zeros (as shown in Figures
T 139 % 1.24band 1.24¢). From these zoomed graphs it is clear that the two remaining zeros
T of f are near x = 1.41 and x = —1.41. You can make these estimates more precise by
—0.2 zooming in even more closely. Most graphing calculators and computer algebra
systems can also find approximate zeros, using a built-in “solve” program. In
FIGURE 1.24b Chapter 3, we present a versatile method (called Newton’s method) for obtaining
Zoomed in on zero near accurate approximations to zeros. The only way to find the exact solutions is to
x=-14 factor the expression (using either long division or synthetic division). Here,
we have

0.02+ F) =P - —2x42= -2 -2 = (r = Dr— V2 + V2),

‘————~——+—>%  from which you can see that the zerosarex=1,x = y2andx=—v/2. m____|

0.2+

v

—00zy Recall that to find the points of intersection of two curves defined by y = f(x) and

—o.04d y = g(x), we set f(x) = g(x) to find the x-coordinates of any points of intersection.

FIGURE 1.24c

Zoomed in on zero near

EXAMPLE 1.23 Finding the Intersections of a Line and a Parabola

2

x=14 Find the points of intersection of the parabola y = x* — x — 5 and the line y = x + 3.

Solution A sketch of the two curves (see Figure 1.25 on the following page) shows
that there are two intersections, one near x = —2 and the other near x = 4.
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To determine these precisely, we set the two functions equal and solve for x:

Subtracting (x + 3) from both sides leaves us with
0=x>-2x—8=(x—4)(x+2).

This says that the solutions are exactly x = —2 and x = 4. We compute the
corresponding y-values from the equation of the line y = x + 3 (or the equation of
the parabola). The points of intersection are then (-2, 1) and (4, 7). Notice that these
are consistent with the intersections seen in Figure 1.25. m

¥ —x—5=x+3.

Unfortunately, you won't always be able to solve equations exactly, as we did in

FIGURE 1.25
y=x+3andy=x*-x-5

examples 1.20-1.23. We explore some options for dealing with more difficult equations.

EXERCISES 1.1

WRITING EXERCISES

1. If the slope of the line passing through points A and B equals
the slope of the line passing through points B and C, explain
why the points A, B and C are colinear.

2. If a graph fails the vertical line test, it is not the graph of a
function. Explain this result in terms of the definition of a
function.

3. You should not automatically write the equation of a line in
slope-intercept form. Compare the following forms of the
same line: y = 2.4(x — 1.8) + 0.4 and y = 2.4x — 3.92. Given
x = 1.8, which equation would you rather use to compute y?
How about if you are given x = 0? For x = 8, is there any ad-
vantage to one equation over the other? Can you quickly
read off the slope from either equation? Explain why
neither form of the equation is “better.”

4. Tounderstand Definition 1.1, you must believe that | x| = —x
for negative x’s. Using x = =3 as an example, explain in
words why multiplying x by —1 produces the same result
as taking the absolute value of x.

In exercises 1-10, solve the inequality.

1. 3x+2<8 2. 3-2x<7
3. 1<2-3x<6 4, -2<2x-3<5
5. x+220 6. 2x+1

x—4 x+2
7. x24+2x=3>0 8. xX>=5x—6<0
9. |[x+5/<2 10. |2x+ 1] <4

In exercises 11-14, determine if the points are colinear.

11. (2,1),(0,2), (4,0) 12. (3,1), (4,4),(5,8)
13. (4,1),(3,2),(1,3) 14. (1,2),(2,5),(4,8)

18 | Lesson 1-1 | Polynomials and Rational Functions

In exercises 15-18, find (a) the distance between the points,
(b) the slope of the line through the given points, and (c) an
equation of the line through the points.

15. (1,2), 3, 6) 16. (1,-2), (-1, -3)
17. (0.3,—1.4), (1.1, —0.4) 18. (1.2,2.1),(3.1,2.4)

In exercises 19-22, find a second point on the line with slope
m and point P, graph the line and find an equation of the

line.
19. m=2,P=(1,3) 20. m=0,P=(-1,1)

21. m=1.2P=(231.1) 22, m= —i,P =(=2,1)

In exercises 23-28, determine if the lines are parallel, perpen-
dicular, or neither.

23. y=3(x-1)+2andy=3(x+4) -1
24. y=2(x-3)+1landy=4(x—-3)+1
25. y=—2(x+1)—1andy=%(x—2)+3
26. y=2x—landy=—-2x+2
27. y=3x+1andy=—§x+2
28. x+2y=1and2x+4y =3

In exercises 29-32, find an equation of a line through the given
point and (a) parallel to and (b) perpendicular to the given
line.

29. y=2(x+1)-2at(21) 30. y=3(x—2)+1at(0,3)

31. y=2x+1at(3,1) 32, y=1at(0,-1)
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In exercises 33 and 34, find an equation of the line through the
given points and compute the y-coordinate of the point on the
line corresponding to x = 4.

33. Y
A
5+ )
4--
3+ °
2.-
1+ )
t t t t —» X
1 2 3 4 5
Yy
34. 1
3.0+
°
2.0+
[ ]
° 1.0+
t t —»
-2 -1 1

In exercises 35-38, use the vertical line test to determine
whether the curve is the graph of a function.

35. Yy

36.

37.

38.

L

In exercises 39-42, identify the given function as polynomial,
rational, both or neither.

39. f(¥) =% —dx+1 40. f) =% *'449‘1‘1
14—
x4+ 2x—1 3

In exercises 43-48, find the domain of the function.

43. f(x) =yx+2

45. f(x) = —”‘1__’;_6 16. f(x) = ;‘2"/:
V9 —x
47, f(x) = x24_ 1 48. f(x) = ﬁ

In exercises 49 and 50, find the indicated function values.
49. f() =x2—x-1; [(0),f(2),f(-3),f(1/2)

50. f(x) = f-c; (1), £(10), £(100), £(1/3)

In exercises 51 and 52, a brief description is given of a situation.
For the indicated variable, state a reasonable domain.

51. A new candy bar is to be sold; x = number of candy bars
sold in the first month.

52. A parking deck is to be built on a 200"-by-200" lot; x = width
of deck (in feet).

19



In exercises 53-56, discuss whether you think y would be a
function of x.

53.

54.

55.

56.

57.

58.

y = grade you get on an exam, x = number of hours you
study

y = probability of getting lung cancer, x = number of
cigarettes smoked per day

y = a person’s weight, x = number of minutes exercising
per day

y = speed at which an object falls, x = weight of object

Figure A shows the speed of a bicyclist as a function of time.
For the portions of this graph that are flat, what is hap-
pening to the bicyclist’s speed? What is happening to the
bicyclist’s speed when the graph goes up? down? Identify
the portions of the graph that correspond to the bicyclist
going uphill; downhill.

Speed

A

» Time

FIGURE A
Bicycle speed

Figure B shows the population of a small country as a func-
tion of time. During the time period shown, the country ex-
perienced two influxes of immigrants, a war and a plague.
Identify these important events.

Population
A

» Time

FIGURE B

Population

In exercises 59-64, find all intercepts of the given graph.

59. y=x*-2x-38 60. y=x*+4x+4
6. y=x>-8 62, y=x>-3x>+3x—1
x2—4 2x—1
63. = 64. =
YT YTy

In exercises 65-72, factor and/or use the quadratic formula to
find all zeros of the given function.

65. f(x) =x*—4x+3 66. f(x) =x*+x-12

67. f(x) = x> —4x+2 68. f(x) =2x2+4x—1

69. f(x) =x>—3x2+2x 70. f(x) =x>—2x2 —x+2
1 fl)=x*+x>-2 2. fx) =2 +xr—dx—4

In exercises 73 and 74, find all points of intersection.

73.
74.

y=x*+2x+3 and y=x+5

y=x*+4x—-2 and y=2x*+x-6

75.

76.

77.

78.

79.

APPLICATIONS

The boiling point of water (in degrees Fahrenheit) at ele-
vation /1 (in thousands of feet above sea level) is given by
B(h) = —1.8h + 212. Find & such that water boils at 98.6°.
Why would this altitude be dangerous to humans?

The spin rate of a golf ball hit with a 9 iron has been
measured at 9100 rpm for a 120-compression ball and at
10,000 rpm for a 60-compression ball. Most golfers use 90-
compression balls. If the spin rate is a linear function of
compression, find the spin rate for a 90-compression ball.
Professional golfers often use 100-compression balls. Esti-
mate the spin rate of a 100-compression ball.

The chirping rate of a cricket depends on the temperature.
A species of tree cricket chirps 160 times per minute at 79°F
and 100 times per minute at 64°F. Find a linear function re-
lating temperature to chirping rate.

When describing how to measure temperature by counting
cricket chirps, most guides suggest that you count the num-
ber of chirps in a 15-second time period. Use exercise 77 to
explain why this is a convenient period of time.

A person has played a computer game many times. The
statistics show that she has won 415 times and lost 120
times, and the winning percentage is listed as 78%. How
many times in a row must she win to raise the reported
winning percentage to 80%?

EXPLORATORY EXERCISES

1.

2.

Suppose you have a machine that will proportionally en-
large a photograph. For example, it could enlarge a 4 X 6
photograph to 8 X 12 by doubling the width and height.
You could make an 8 X 10 picture by cropping 1 inch off
each side. Explain how you would enlarge a 3% X 5 picture

to an 8 X 10. A friend returns from vacation with a 31 x 5

picture showing a fishing boat in the outer 1" 6n the right.

If you use your procedure to make an 8 x10 enlargement,
does the boat make the cut?

Solve the equation |x—2|+ |[x—3|=1. (Hint: It's an
unusual solution, in that it’s more than just a couple of

numbers.) Then, solve the equation \/x+3 —4yx—1+
\/x+8—6vx—1=1. (Hint: If you make the correct sub-

stitution, you can use your solution to the previous equation.)
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~N N

Yy
Range { f}
Kgf/
FIGURE 1.26
g§=f"
Yy
A
8
61 y=a°
4 =+
2 +
: : : >
-2 1 2
_2 4
_4 £
FIGURE 1.27
Finding the x-value corresponding
toy=28
REMARK 2.1
Pay close attention to the
notation. Notice that f~1(x)
does not mean —. We write
f)
the reciprocal of f(x) as
1 -1
— =[f()].
@ [f®)
Yy
A
[
12+
8 =+
4 =+
x
—4 -2 2 4
FIGURE 1.28
y=x

Inverse Functions

The number of common inverse problems is immense. For instance, in an electrocar-
diogram (EKG), measurements of electrical activity on the surface of the body are used
to infer something about the electrical activity on the surface of the heart. This is re-
ferred to as an inverse problem, since physicians are attempting to determine what
inputs (i.e., the electrical activity on the surface of the heart) cause an observed output
(the measured electrical activity on the surface of the chest).

In this section, we introduce the notion of an inverse function. The basic idea is
simple enough. Given an output (that is, a value in the range of a given function), we
wish to find the input (the value in the domain) that produced that output. That is,
given a y € Range{f}, find the x € Domain{f} for which y = f(x). (See the illustration of
the inverse function g shown in Figure 1.26 )

For instance, suppose that f(x) = x> and y = 8. Can you find an x such that x> = 8?
That is, can you find the x-value corresponding to y = 8? (See Figure 1.27.) Of course,

the solution of this particular equationis x = % = 2.Ingeneral, if x> = y, thenx = {/y

In light of this, we say that the cube root function is the inverse of f(x) = x°.

Two Functions That Reverse the Action of
Each Other

If f(x) = x® and g(x) = x'/3, show that
fg) =x and g(fx) =ux,

EXAMPLE 2.1

for all x.

Solution For all real numbers x, we have

Fg) = F(x/?) = (x1/3)% = x

and g0 =g = )P =x. u

Notice in example 2.1 that the action of f undoes the action of ¢ and vice versa. We
take this as the definition of an inverse function. (Again, think of Figure 1.26.)

DEFINITION 21
Assume that f and ¢ have domains A and B, respectively, and that f(g(x)) is
defined for all x € B and g(f(x)) is defined for all x € A. If

=x forallxe B, and

)
g(f(v) =x,

for allx € A,

we say that g is the inverse of f, written ¢ = f~1. Equivalently, f is the inverse of
gf=g"

Observe that many familiar functions have no inverse.

EXAMPLE 2.2 A Function with No Inverse
Show that f(x) = x? has no inverse on the interval (—co, c0).

Solution Notice that f(4) = 16 and f(—4) = 16. That is, there are fwo x-values that
produce the same y-value. So, if we were to try to define an inverse of f, how would
we define f~1(16)? Look at the graph of y = x? (see Figure 1.28) to see what the

21
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a b

FIGURE 1.29
fla) =f(), fora#b
So, f does not pass the
horizontal line test and is not
one-to-one.

»
>

Yy = f(x)

FIGURE1.30
Every horizontal line intersects
the curve in at most one point.
So, f passes the horizontal
line test and is one-to-one.

20+

_40__
FIGURE1.31
y=x-5

problem is. For each y > 0, there are two x-values for which y = x2. Because of this, ‘
the function does not have an inverse. m

For f(x) = x?, it is tempting to jump to the conclusion that g(x) = 4/x is the inverse
of f (x). Notice that although f(g(x)) = ( \/E)z = xforallx > 0 (i.e., for all x in the domain

of g(x)), it is not generally true that g(f(x)) = \/; = x. In fact, this last equality holds
only for x > 0. However, for f(x) = x° restricted to the domain x > 0, we do have that

fH@ = V.

DEFINITION 2.2

A function f is called one-to-one when for every y € Range{f}, there is exactly one
x € Domain{f} for which y = f(x).

REMARK 2.2

Observe that an equivalent definition of one-to-one is the following. A function
f(x) is one-to-one if and only if the equality f(a) = f(b) implies a4 = b. This version
of the definition is often useful for proofs involving one-to-one functions.

It is helpful to think of the concept of one-to-one in graphical terms. Notice that
a function f is one-to-one if and only if every horizontal line intersects the graph in
at most one point. This is referred to as the horizontal line test. We illustrate this in
Figures 1.29 and 1.30. The following result should now make sense.

THEOREM 2.1

A function f has an inverse if and only if it is one-to-one.

This theorem simply says that every one-to-one function has an inverse and every
function that has an inverse is one-to-one. However, it says nothing about how to find
an inverse. For very simple functions, we can find inverses by solving equations.

EXAMPLE 2.3 Finding an Inverse Function
Find the inverse of f(x) = x> — 5.

Solution Note that it is not entirely clear from the graph (see Figure 1.31) whether
f passes the horizontal line test. To find the inverse function, write y = f(x) and solve
for x (i.e., solve for the input x that produced the observed output y). We have

y=x—5.
Adding 5 to both sides and taking the cube root gives us
y+5"° =) =x.
So, x = f~(y) = (y + 5)/3. Reversing the variables x and y gives us
') =x+5Y3. =
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TODAY IN
MATHEMATICS

Kim Rossmo (1955- )

A Canadian criminologist who
developed the Criminal
Geographic Targeting algorithm
that indicates the most probable
area of residence for serial
murderers, rapists and other
criminals. Rossmo served 21
years with the Vancouver Police
Department. His mentors were
Professors Paul and Patricia
Brantingham of Simon Fraser
University. The Brantinghams
developed Crime Pattern Theory,
which predicts crime locations
from where criminals live, work
and play. Rossmo inverted their
model and used the crime sites
to determine where the criminal
most likely lives. The premiere
episode of the television drama
Numbers was based on Rossmo’s
work.

EXAMPLE 2.4 A Function That Is Not One-to-One

Show that f(x) = 10 — x* does not have an inverse.

Solution You can see from a graph (see Figure 1.32) that f is not one-to-one; for
instance, f(1) = f(-1) = 9. Consequently, f does not have an inverse. m___ |

20

—20+
—40+
—60—+

—80+

—100+

FIGURE 1.32
y=10-x*

FIGURE 1.33
Reflection through y = x

Even when we can't find an inverse function explicitly, we can say something
graphically. Notice that if (g, b) is a point on the graph of y = f(x) and f has an inverse,
f~1, then since

b= fla),

we have that

frO =) =a.
That is, (b, a) is a point on the graph of y = f~!(x). This tells us a great deal about the
inverse function. In particular, we can immediately obtain any number of points on
the graph of y = f~1(x), simply by inspection. Further, notice that the point (b, a) is the
reflection of the point (4, b) through the line y = x. (See Figure 1.33.) It now follows
that given the graph of any one-to-one function, you can draw the graph of its inverse
simply by reflecting the entire graph through the line y = x.
In example 2.5, we illustrate the symmetry of a function and its inverse.

EXAMPLE 2.5 The Graph of a Function and Its Inverse

Draw a graph of f(x) = x> and its inverse.

Solution From example 2.1, the inverse of f(x) = x° is f~1(x) = x'/3. Notice the sym-
metry of their graphs shown in Figure 1.34. m

FIGURE1.34 FIGURE 1.35

y=x>and y = x!/3 Graphs of f and f~!
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y Most often, we cannot find a formula for an inverse function and must be satisfied

3‘?/ =@ y=a with simply knowing that the inverse function exists. Observe that we can use the
7 symmetry principle outlined above to draw the graph of an inverse function, even when
2 // we don’t have a formula for that function. (See Figure 1.35.)

EXAMPLE 2.6 Drawing the Graph of an Unknown Inverse Function

Draw a graph of f(x) = x° + 8% + x + 1 and its inverse.

Solution  Although we are unable to find a formula for the inverse function, we
can draw a graph of f~! with ease. We simply take the graph of y = f(x) and reflect
it across the line iy = x, as shown in Figure 1.36 . (When we introduce parametric
equations in section 9.1, we will see a clever way to draw this graph with a graphing
calculator.) m

FIGURE 1.36
y=f) andy =f"1(x)

EXERCISES 1.2

WRITING EXERCISES 7 f)=x -1 8. fl)=x"+4
1. Explain in words (and a picture) why the following is 9. fl)=x"+2 10. f(x) =x*—2x-1
true: if f(x) is increasing for all x [i.e., if x, > x;, then 1. f() = \/x3_+1 12. f() = \/xz_—l—l

f(x,) > f(x;)], then f has an inverse.

2. Suppose the graph of a function passes the horizontal line

test. Explain why you know that the function has an inverse

(defined on the range of the function). In exercises 13-18, assume that the function has an inverse.
Without solving for the inverse, find the indicated function

. R k ing a high-f 1 i
3. Radar works by bouncing a high-frequency electromagnetic L.

pulse off of a moving object, then measuring the distur-
bance in the pulse as it is bounced back. Explain why this 13. f(x) =2 +4x -1, @ F1=1), ®) @)
is an inverse problem by identifying the input and output.

14. f) =x>+2x+1, a) f71(1), b) f1(13
4. Each human disease has a set of symptoms associated with U @ ) ®) f713)
it. Physicians attempt to solve an inverse problem: given 15. f(x) =2° +32° +x, (@ f(=5), () 15
the symptoms, they try to identify the disease causing the s - »
symptoms. Explain why this is not a well-defined inverse 16. f(x) = x +4x -2, (@) f7138),  (b) f70)
problem (i.e., logically it is not always possible to correctly 17, f@x) = Ny @ @), ®) f12)

identify diseases from symptoms alone).

18. f(x) = VS +483 +3x+1, (a) f71(3), (b) (1)

In exercises 1-4, show that f(g(x)) = x and g(f(x)) = x for

all x:
1. f(x) = x° and g(x) = x'/° In exercises 19-22, use the given graph to graph the inverse
function.
, L\
2. f(x) =4x° and g(x) = (Zx) 19. y
— 1 A
3. f) =2 +1orgk) =4 x2 4+
4 f09= — and gy = T2 (£ 0,x# -2) 5
—t—t— —t—F—+—>x
—4 -2 2 4
In exercises 5-12, determine whether the function has an in- T
verse (is one-to-one). If so, find the inverse and graph both the =27
function and its inverse. T
5. flx) =x° -2 6. f(x) =x°+4 47
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21.

22.

In exercises 23-26, assume that f has an inverse, and explain
why the statement is true.

23.

24.

25.

26.

If the range of f is all y > 0, then the domain of f~! is all
x> 0.

If the graph of f includes the point (a, b), the graph of f*
includes the point (b, a).

If the graph of f does not intersect the line y = 3, then f ! (x)
is undefined at x = 3.

If the doman of f is all real numbers, then the range of f~
is all real numbers.

In exercises 27-36, use a graph to determine whether the func-
tion is one-to-one. If it is, graph the inverse function.

27. f(x)
28. f(x)

¥ -5

=3

29. f)=x>+2x—1

30.
31.
32.

33.

34.

35.

36.

1
f6) = x+1

4
fe = 2 +1

x
fl = x+4
fl) = —=

Exercises 37-46 involve inverse functions on restricted domains.

37. Show that f(x) = x*(x > 0) and g(x) = \/J_C (x> 0) are in-

38.

39.

40.

41.

42,

43.

44.

45.

46.

verse functions. Graph both functions.

Show that f(x)=x2—1(x>0) and g(x)=+vx+1(x>-1)
are inverse functions. Graph both functions.

Graph f(x) = x* for x < 0 and verify that it is one-to-one.
Find its inverse. Graph both functions.

Graph f(x) = x? + 2 for x < 0 and verify that it is one-to-one.
Find its inverse. Graph both functions.

Graph f(x) = (x — 2)? and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

Graph f(x) = (x + 1)* and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

Graph f(x) = /x> — 2x and find an interval on which it is
one-to-one. Find the inverse of the function restricted to
that interval. Graph both functions.

Graphf(x) = — e 1 and find an interval on which it is one-
X2 —
to-one. Find the inverse of the function restricted to that

interval. Graph both functions.

Graph f(x) = sinx and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

Graph f(x) = cosx and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

APPLICATIONS

In exercises 47-52, discuss whether the function described has
an inverse.

47. The income of a company varies with time.

48.
49.

The height of a person varies with time.

For a dropped ball, its height varies with time.
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50. For a ball thrown upward, its height varies with time. 54. Suppose that an employee is offered a 6% raise plus aAED 500
bonus. Find the inverse of this pay increase if (a) the 6% raise
comes before the bonus; (b) the 6% raise comes after the
bonus.

51. The shadow made by an object depends on its three-
dimensional shape.

52. The number of calories burned depends on how fast a per-
son runs.

53. Suppose that your boss informs you that you have been EXPLORATORY EXERCISES

awarded a 10% raise. The next week, your boss announces

that due to circumstances beyond her control, all employ- 1. Find all values of k such thatf(x) = x> + kx + 1 is one-to-one.
ees will have their salaries cut by 10%. Are you as well off
now as you were two weeks ago? Show that increasing by
10% and decreasing by 10% are not inverse processes. Find
the inverse for adding 10%. (Hint: To add 10% to a quantity
you can multiply the quantity by 1.10.)

2. Find all values of k such that f(x) = x> + 2x? + kx — 1 is one-
to-one.
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NOTES

When we discuss the period of a
function, we most often focus
on the fundamental period.

Trigonometric and Inverse

Trigonometric Functions

Many phenomena encountered in your daily life involve waves. For instance, music
is transmitted from radio stations in the form of electromagnetic waves. Your radio
receiver decodes these electromagnetic waves and causes a thin membrane inside the
speakers to vibrate, which, in turn, creates pressure waves in the air. When these waves
reach your ears, you hear the music from your radio. (See Figure 1.37.) Each of these
waves is periodic, meaning that the basic shape of the wave is repeated over and over
again. The mathematical description of such phenomena involves periodic functions,
the most familiar of which are the trigonometric functions. First, we remind you of a
basic definition.

KALC I
§104.7 ru :

FIGURE 1.37

Radio and sound waves

DEFINITION 3.1
A function f is periodic of period T if
fa+T)=f)

for all x such that x and x + T are in the domain of f. The smallest such number
T > 0 is called the fundamental period.
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(cos 6, sin 6)

FIGURE1.38
Definition of sin 6 and cos 6:
cos@ =xandsinf =y

There are several equivalent ways of defining the sine and cosine functions. We
want to emphasize a simple definition from which you can easily reproduce many of the
basic properties of these functions. Referring to Figure 1.38 , begin by drawing the unit
circle x> + > = 1. Let @ be the angle measured (counterclockwise) from the positive
x-axis to the line segment connecting the origin to the point (x, y) on the circle. Here,
we measure 6§ in radians, given by the length of the arc indicated in the figure. Again
referring to Figure1.38 , we define sin 6 to be the y-coordinate of the point on the circle
and cos 0 to be the x-coordinate of the point. From this definition, it follows that sin 0
and cos 0 are defined for all values of 0, so that each has domain —co < 6 < o0, while
the range for each of these functions is the interval [-1, 1].

REMARK 3.1

Unless otherwise noted, we always measure angles in radians.

Note that since the circumference of a circle (C = 2ar) of radius 1 is 2z, we have
that 360° corresponds to 2z radians. Similarly, 180° corresponds to x radians, 90° cor-
responds to 7 /2 radians, and so on. In the accompanying table, we list some common
angles as measured in degrees, together with the corresponding radian measures.

Angle in degrees | 0° | 30° [ 45° | 60° [ 90° | 135° | 180° | 270° [ 360°

3 3
ek e i

Angle in radi 0
ngle in radians 1 2

2

]
Wiy
NN

z
6

THEOREM 3.1
The functions f() = sin @ and g(f) = cos 0 are periodic, of period 2.

PROOF

Referring to Figure 1.38, since a complete circle is 2z radians, adding 27 to any angle
takes you all the way around the circle and back to the same point (x, y). This says that

sin(f + 2z) = sin 6
and
cos(0 + 2x) = cos 0,
for all values of 8. Furthermore, 27 is the smallest positive angle for which this is true. m

You are likely already familiar with the graphs of f (x) = sinx and g(x) = cos x shown
in Figures 1.39a and 1.39b, respectively.

Y Y
A A
t y t t t —»x t t t t } —»>x
_bm _3m _m us 3T b 27 -7 T 27
2 2 2 2 2 2
—1+ —1+
FIGURE 1.39a FIGURE 1.39b
y =sinx Yy =cosx
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X sinx cosx

0 0 1

x 1 V3

6 2 2

x V2 V2

4 2 2

x V3 1

3 2 2

3 1 0

2w | VB _1

3 2 2

| V2 _V2

4 2 2

EL N It _¥3

6 2 2

T 0 -1

3z

> -1 0

2 0 1
REMARK 3.2

Instead of writing (sin 6)? or
(cos 0)%, we usually use the
notation sin? @ and cos? 6,
respectively. Further, we often
suppress parentheses and
write, for example, sin 2x
instead of sin (2x).

REMARK 3.3

Most calculators have keys for
the functions sin x, cos x and
tan x, but not for the other
three trigonometric functions.
This reflects the central role
that sin x, cos x and tan x play
in applications. To calculate
function values for the other
three trigonometric functions,
you can simply use the
identities

1 1
cotx = ——, secx=
tanx Ccos X
1
and cscx = —.
sinx

Notice that you could slide the graph of iy = sin x slightly to the left or right and get an
exact copy of the graph of y = cos x. Specifically, we have the relationship

. T
sin <x+ E) = COS X.

The accompanying table lists some common values of sine and cosine. Notice that
many of these can be read directly from Figure1.38 .

EXAMPLE 3.1

Find all solutions of the equations (a) 2 sin x — 1 = 0 and (b) cos?> x — 3 cosx + 2 = 0.

Solving Equations Involving Sines and Cosines

Solution For (a), notice that 2sinx —1 =0if 2sinx =1 or sinx = 1 From the unit
circle, we find that sinx = % ifx = % orx = 5?”. Since sin x has period 2z, additional
solutions are % +2r, 5?” + 27, % + 47 and so on. A convenient way of indicating
that any integer multiple of 27 can be added to either solution is to write

x=Z 4+ 2nxorx=2Z 4 2nx, for any integer n. Part (b) may look rather difficult at
first. However, notice that it looks like a quadratic equation using cos x instead of x.

With this clue, you can factor the left-hand side to get

2

0=cos“x—3cosx+2=(cosx—1)(cosx —2),

from which it follows that either cos x = 1 or cos x = 2. Since —1 < cosx < 1 for all
x, the equation cos x = 2 has no solution. However, we get cos x = 1 if x = 0, 27 or
any integer multiple of 2z. We can summarize all the solutions by writing x = 2nz,
for any integer n. m

We now give definitions of the remaining four trigonometric functions.

DEFINITION 3.2
sinx

The tangent function is defined by tanx = .
cos x

The cotangent function is defined by cotx = cosx

inx’

The secant function is defined by secx = L
cosx

Y o . 1
The cosecant function is defined by cscx = —.
sinx

We show graphs of these functions in Figures1.40a,1.40b,1.40c and 1.40d (on the
following page). Notice in each graph the locations of the vertical asymptotes. For the
“co” functions cot x and csc x, the division by sin x causes vertical asymptotes at 0, +7,
+27 and so on (where sin x = 0). For tan x and sec x, the division by cos x produces
vertical asymptotes at +7 /2, +37/2, +57 /2 and so on (where cos x = 0). Once you have
determined the vertical asymptotes, the graphs are relatively easy to draw.

Notice that tan x and cot x are periodic, of period z, while sec x and csc x are
periodic, of period 2.

It is important to learn the effect of slight modifications of these functions. We
present a few ideas here and in the exercises.
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Yy =cotx
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FIGURE 1.40d

Yy =cscx

EXAMPLE 3.2 Altering Amplitude and Period
Graph y = 2 sinx and y = sin 2x, and describe how each differs from the graph of

f >
—27 -5 /7 27
|
|
|
|
I
FIGURE 1.40a
y =tanx
Yy
A
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| —T | | |
: : : : : 4 >
l l l l
| I | I
| I | I
| I | I
| I | I
FIGURE 1.40c
Yy =secx
y = sinx. (See Figure 1.41a.)
Yy Yy
A A
2+ 94
1_..

FIGURE 1.41a

Y =sinx

o £

ER

N
T
|

— o

+-2

FIGURE 1.41b

Yy =2sinx

"

FIGURE 1.41c
y = sin (2x)

T

AANN
T LY

/=x
\

Solution The graph of y = 2 sin x is given in Figure 1.41b . Notice that this graph is
similar to the graph of y = sinx, except that the y-values oscillate between —2 and 2
instead of —1 and 1. Next, the graph of iy = sin 2x is given in Figure 1.41c. In this

case, the graph is similar to the graph of y = sinx except that the period is 7 instead

of 27 (so that the oscillations occur twice as fast). m
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The results in example 3.2 can be generalized. For A > 0, the graph of y = A sinx
oscillates between y = —A and y = A. In this case, we call A the amplitude of the sine
curve. Notice that for any positive constant ¢, the period of y = sin cx is 2z /c. Similarly,
for the function A cos cx, the amplitude is A and the period is 2z /c.

The sine and cosine functions can be used to model sound waves. A pure tone
(think of a tuning fork note) is a pressure wave described by the sinusoidal function A
sin ct. (Here, we are using the variable t, since the air pressure is a function of time.) The
amplitude A determines how loud the tone is perceived to be and the period determines
the pitch of the note. In this setting, it is convenient to talk about the frequency f =
¢/2x. The higher the frequency is, the higher the pitch of the note will be. (Frequency
is measured in hertz, where 1 hertz equals 1 cycle per second.) Note that the frequency
is simply the reciprocal of the period.

EXAMPLE 3.3 Finding Amplitude, Period and Frequency

Find the amplitude, period and frequency of (a) f(x) = 4 cos 3x and
(b) g(x) = 2sin(x/3).

Solution (a) For f(x), the amplitude is 4, the period is 27 /3 and the frequency
is 3/(2x). (See Figure 1.42a.) (b) For g(x), the amplitude is 2, the period is 2z /(1/3) =
67 and the frequency is 1/(67). (See Figure 1.42b.)

h A

Yy Yy

>

t
—2m

4
/\ /\ | 2“
P . : : > \ —t et
lam| l2r¢ \/257\/4; o —37 27 -7 T 27w 3m
3 3
a1 21

FIGURE 1.42a FIGURE1.42b
y = 4cos3x y = 2sin (x/3)

There are numerous formulas or identities that are helpful in manipulating the
trigonometric functions. You should observe that, from the definition of sin 6 and cos 6
(see Figure 1.38), the Pythagorean Theorem gives us the familiar identity

sin? @ + cos? 0 = 1,
since the hypotenuse of the indicated triangle is 1. This is true for any angle 6. In addition,
sin(—0) = —sin® and cos(—0) = cos O

We list several important identities in Theorem 3.2.

THEOREM 3.2
For any real numbers a and g, the following identities hold:
sin (@ + f) = sina cos f + sin ff cos a (3.1)
cos (@ + ) = cosacos f — sina sin (3.2)
sin o = %(1 — cos 2a) (3.3)
cos’a = %(1 + cos 2a). (3.4)
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A
1__
f >
_r s
2 2
_1__
FIGURE1.43
y = sinxon —%,%
REMARK 34

Mathematicians often use the
notation aresin x in place of
sin™! x. People read sin™ x
interchangeably as “inverse
sine of x” or “arcsine of x.”

FIGURE 1.44

y=sin""x

From the basic identities summarized in Theorem 3.2, numerous other useful iden-
tities can be derived. We derive two of these in example 3.4.

EXAMPLE 3.4 Deriving New Trigonometric Identities
Derive the identities sin 26 = 2 sin 6 cos 6 and cos 20 = cos2 § — sin® 0.

Solution These can be obtained from formulas (3.1) and (3.2), respectively, by
substituting @ = 6 and f = 6. Alternatively, the identity for cos 26 can be obtained
by subtracting equation (3.3) from equation (3.4). [ |

The Inverse Trigonometric Functions

We now expand the set of functions available to you by defining inverses to the trigono-
metric functions. To get started, look at a graph of y = sinx. (See Figure 1.41a.) Notice
that we cannot define an inverse function, since sin x is not one-to-one. Although the sine
function does not have an inverse function, we can define one by modifying the domain of
the sine. We do this by choosing a portion of the sine curve that passes the horizontal line
test. If we restrict the domain to the interval [— %, %] , then y = sinx is one-to-one there
(see Figure1.43) and, hence, has an inverse. We thus define the inverse sine function by

y=sin"'x ifandonlyif siny=xand -5 <y<3. (3.5)

Think of this definition as follows: if y =sin"'x, then y is the angle (between

—% and %) for which sin y = x. Note that we could have selected any interval on which

sinx is one-to-one, but [—%, g] is the most convenient. To verify that these are inverse
functions, observe that

sin(sin"'x) =x, forallx € [-1,1]
and sin"}(sinx) =x, forallxe |- %, %] . (3.6)

Read equation (3.6) very carefully. It does not say that sin~! (sinx) = x for all x, but rather,
only for those in the restricted domain, [— %, %] For instance, sin_l(sin ) # &, since

sin”!(sin ) = sin™'(0) = 0.

EXAMPLE 3.5 Evaluating the Inverse Sine Function

Evaluate (a) sin~" (?) and (b) sin™" (- %)

Solution  For (a), we look for the angle 6 in the interval [-Z, %] for which

2
. _ \/5 . s (T \/5 T T
sin @ —\/?. Note that since sin (3) = and 7€ [— > E]’ we have that
-1 3\ _ =« . T\ _ 1 V4 T
sin (7) =3 For (b), note that sin (_Z) 13 and 1A & [_E’ E]' Thus,

sin! (-1)=-=Z
2)7 ¢ N

Judging by example 3.5, you might think that (3.5) is a roundabout way of defining
a function. If so, you've got the idea exactly. In fact, we want to emphasize that what we
know about theinverse sine functionis principally throughreference to the sine function.

Recall from our discussion in section 0.3 that we can draw a graph of y = sin™' x

simply by reflecting the graph of y = sinx on the interval [— 5 %] (from Figure 1.43)
through the line y = x. (See Figure 1.44.)
Turning to y = cos x, observe that restricting the domain to the interval [— %, %] ,as

we did for the inverse sine function, will not work here. (Why not?) The simplest way
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to make cos x one-to-one is to restrict its domain to the interval [0, z]. (See Figure 1.45.)

Consequently, we define the inverse cosine function by
\ g y=cos 'x ifandonlyif cosy=xand0<y<x.
i
o ™
\ Note that here, we have

Ty)=x forallxe[-1,1]

cos (cos™
FIGURE 1.45 and cos H(cosx) =x, forallx € [0, z].
y =cosxon [0, 7]
As with the definition of arcsine, it is helpful to think of cos™! x as that angle  in

[0, z] for which cos# = x. As with sin~! x, it is common to use cos~! x and arccos x

Copyright © McGraw-Hill Education

interchangeably.
EXAMPLE 3.6 Evaluating the Inverse Cosine Function
Evaluate (a) cos™!(0) and (b) cos™ (- %)
Y
4 Solution For (a), you will need to find that angle 0 in [0, z] for which cos § = 0. It’s
™ not hard to see that cos™(0) = g (If you calculate this on your calculator and get 90,
your calculator is in degrees mode. In this event, you should immediately change it
PN to radians mode.) For (b), look for the angle 6 € [0, x| for which cos 6 = —72. Notice
2
that cos (%”) = —\/TE and ‘%” € [0, z]. Consequently,
: > 1(_V2\_3 m
— b cos™" ( 2)—4.
Once again, we obtain the graph of this inverse function by reflecting the graph of
FIGURE 1.46 y =cosx on the interval [0, z] (seen in Figure 1.45) through the line y =x. (See
y=cos'x Figure 1.46.)

We can define inverses for each of the four remaining trigonometric functions in
similar ways. For y = tanx, we restrict the domain to the interval (—%, %) Think about
why the endpeints of this interval are not included. (See Figure 1.47.) Having done
this, you should readily see that we define the inverse tangent function by

y=tan'x ifandonlyif tany=x and -5 <y<3.

The graph of y = tan™! x is then as seen in Figure 1.48 found by reflecting the graph in
Figure 1.47 through the line y = x.

Yy
A
| 6+ I
| |
| |
| |
| 4+ I
| |
| |
I ol l y
| | A
I l T I
+ —»x
_T s
: :
I 27T I
! ! } } } } } —»x
| | -6 -4 -2 2 4 6
| -4+ I
| |
| |
I —6+ l e
FIGURE 1.47 FIGURE 1.48
y:tanxon(—g,g) y = tan~' x
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FIGURE 1.49
y =secxon [0, 7]
Yy
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FIGURE 1.50
y=seclx
REMARK 3.5

We can likewise define

in the exercises.

inverses to cot x and csc x. As
these functions are used only
infrequently, we will omit
them here and examine them

Function Domain Range

sinlx | [=1,1] [—f-

F4

2’ 2

|

“'x [-1,1] [0, 7]

tan~!x (—00, ) ( -

z
2

7

SR

)

sin 6 1

)
4‘105
100 m—2%/

FIGURE 1.51
Height of a tower

EXAMPLE 3.7 Evaluating an Inverse Tangent

Evaluate tan™!(1).

T T

5 E) for whichtan 6 =

1.
This is easy enough. Sincetan () = 1and § € ( - 3, 5), we have that tan™'(1) = .
n

Solution  You must look for the angle 6 on the interval (

We now turn to defining an inverse for secx. First, we must issue a disclaimer.
There are several reasonable ways in which to suitably restrict the domain and differ-
ent authors restrict it differently. We have (somewhat arbitrarily) chosen to restrict the
domain to be [0, %) U (%, ﬂ'] . Why not use all of [0, z]? You need only think about the
definition of sec x to see why we needed to exclude the value x = % See Figure 1.49 for

a graph of sec x on this domain. (Note the vertical asymptote at x = = ) Consequently,

>
we define the inverse secant function by

y=sec”'x ifandonlyif secy=xandy e [0,5)u (5 7].

A graph of sec™! x is shown in Figure 1.50.

EXAMPLE 3.8 Evaluating an Inverse Secant

Evaluate sec™! (—1/2).

Solution You must look for the angle 6 with 6 € [0, %) U (%, 7[‘] , for which

secd = —\/E. Notice that if sec 6 = —\/5, then cos 6 = —% = —%. Since
3z \/— 3r

cos - = _Tz and the angle %’r is in the interval (%, 7[] , we have sec™1(— \/E) ==
n

Calculators do not usually have built-in functions for sec x or sec™! x. In this case,
you must convert the desired secant value to a cosine value and use the inverse cosine
function, as we did in example 3.8.

We summarize the domains and ranges of the three main inverse trigonometric
functions in the margin.

In many applications, we need to calculate the length of one side of a right triangle
using the length of another side and an acute angle (i.e., an angle between 0 and %
radians). We can do this rather easily, as in example 3.9.

EXAMPLE 3.9 Finding the Height of a Tower

A person 100 m from the base of a tower measures an angle of 60° from the ground
to the top of the tower. (See Figure 1.51.) (a) Find the height of the tower. (b) What
angle is measured if the person is 200 m from the base?

Solution For (a), we first convert 60° to radians:

60° = 60— = Z radians.
180 3
We are given that the base of the triangle in Figure 1.51 is 100 m. We must now
compute the height /1 of the tower. Using the similar triangles indicated in
Figure 1.51, we have
sin@ _ h

cosf 100’

so that the height of the tower is

sin @

h =100 0 =100tan0=100tan%=100 3~ 173 m.

COS
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For part (b), the similar triangles in Figure 1.51 give us

ho_100v/3 43

tand =350 = 200 2

Since 0 < 0 < g, we have

3
0 = tan™! <\/T_> ~ 0.7137 radians (about 41 degrees). g

In example 3.10, we simplify expressions involving both trigonometric and inverse
trigonometric functions.

EXAMPLE 3.10 Simplifying Expressions Involving Inverse
Trigonometric Functions

Simplify (a) sin (cos™! x) and (b) tan (cos~! x).

Solution Do not look for some arcane formula to help you out. Think first: cos™! x

is an angle (call it 8) for which x = cos . First, consider the case where x > 0.
Looking at Figure 1.52, we have drawn a right triangle, with hypotenuse 1 and
adjacent angle 6. From the definition of the sine and cosine, then, we have that the
base of the triangle is cos § = x and the altitude is sin §, which by the Pythagorean

Theorem is
sin (cos ' x) = sinf = V1 —x2.

Wait! We have not yet finished part (a). Figure 1.52 shows 0 < 8 < %, but by
1

sin 0 =+/1 —a?
1 definition, # = cos™" x could range from 0 to z. Does our answer change if % <

0 < n? To see that it doesn’t change, note that if 0 < 6 < z, then sin@ > 0. From the
Pythagorean identity sin” 6 + cos® 6 = 1, we get

sinH:i\/l—coszezi\/l—xz.

0= cos
cos 0=x Since sin § > 0, we must have
FIGURE 1.52 sinf = V1 —x2,
0 =cos'x

for all values of x.
For part (b), you can read from Figure 1.52 that

i Vi
tan (cos™' x) = tan§ = siné _ V1-x*
cos 6 X

Note that this last identity is valid, regardless of whether x = cos 0 is positive or
negative. ®

EXERCISES 1.3

WRITING EXERCISES

1. Many students are comfortable using degrees to measure
angles and don’t understand why they must learn radian
measures. As discussed in the text, radians directly measure
distance along the unit circle. Distance is an important as-
pect of many applications. In addition, we will see later that
many calculus formulas are simpler in radians form than in
degrees. Aside from familiarity, discuss any and all advan-
tages of degrees over radians. On balance, which is better?

2. A student graphs f(x) = cosx on a graphing calculator and
gets what appears to be a straight line at height y =1 in-
stead of the usual cosine curve. Upon investigation, you
discover that the calculator has graphing window —10 <
x <10, -10 < y < 10 and is in degrees mode. Explain what
went wrong and how to correct it.

3. Inverse functions are necessary for solving equations. The

restricted range we had to use to define inverses of the
trigonometric functions also restricts their usefulness in
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equation solving. Explain how to use sin™ x to find all solu-
tions of the equation sinu = x.

4. Discuss how to compute sec™! x, csc™'x and cot™ x on a cal-
culator that has built-in functions only for sin”! x,cos” ! x
and tan~! x.

5. In example 3.3, f(x) =4cos3x has period 2z/3 and
g(x) = 2sin(x/3) has period 6. Explain why the sum
h(x) = 4 cos 3x + 2 sin (x/3) has period 67.

6. Give a different range for sec™ x than that given in the text.
For which x’s would the value of sec™! x change? Using the
calculator discussion in exercise 4, give one reason why we
might have chosen the range that we did.

In exercises 1 and 2, convert the given radians measure to
degrees.

L @7 (0

4

5 OF
2 @% B (2

In exercises 3 and 4, convert the given degrees measure to
radians.

3. (a)180° (b)270° (c)120° (d) 30°
4. (2)40°  (b)80°  (c) 450° (d) 390°

In exercises 5-14, find all solutions of the given equation.

5. 2cosx—1=0 6. 2sinx+1=0

7. V2cosx—1=0 8. 2sinx—1/3=0

9. sin’x—4sinx+3 =0 10. sin’x —2sinx—3 =0
11. sin*x+cosx—1=0 12. sin2x —cosx =0

13. cos’x+cosx =0 14. sin*x —sinx=0

In exercises 15-24, sketch a graph of the function.
15. f(x) =sin2x
17. f(x) = tan2x

19. f(x) =3cos(x —x/2) 20. f(x) =4cos(x+ x)
21. f(x) = sin2x — 2 cos 2x 22. f(x) = cos3x — sin 3x
23. f(x) = sinxsin12x 24. f(x) = sinxcos12x

Inexercises 25-32, identify the amplitude, period and frequency.

25. f(x) = 3sin2x 26. f(x) =2cos3x

27. f(x) = 5cos3x 28. f(x) =3sin5x
29. f(x) =3cos(2x — 7 /2) 30. f(x) =4sin(3x + x)
31. f(x) = —4sinx 32. f(x) = —2cos3x

In exercises 33-36, prove that the given trigonometric identity
is true.

33. sin(a — f) = sina cos f — sin ff cos a

34. cos(a — f) = cosacos f + sinasin f

35. (a) cos(20) =2cos?0 —1 (b) cos (20) =1 —2sin*@

36. (a) sec’d =tan’0 +1 (b) csc?0 =cot?0 +1

In exercises 37-46, evaluate the inverse function by sketching a
unit circle, locating the correct angle and evaluating the ordered
pair on the circle.

37. cos™!0 38. tan"10
39. sin~!(-1) 40. cos (1)
41. sec™'1 42, tan~'(-1)
43, sec™'2 44. csc7'2
45. cot™'1 46. tan"'4/3

47. Prove that, for some constant j,
4cosx —3sinx = 5cos (x + f).
Then, estimate the value of j.

48. Prove that, for some constant f,

2sinx + cosx = \/gsin (x+ p).

Then, estimate the value of f.

In exercises 49-52, determine whether the function is periodic.
If it is periodic, find the smallest (fundamental) period.

49. f(x) = cos2x + 3sinzx
50. f(x) = sinx —cos V/2x
51. f(x) = sin2x — cos 5x
52. f(x) = cos3x — sin 7x

In exercises 53-56, use the range for 6 to determine the indi-
cated function value.

53. sinf = %,Osﬁs %; find cos 6.

54, cos@:é,()gesg; find sin 6.
55. sinf = %,% <60 < findcosH.
56. sinf = %,% <6 <x findtané.

In exercises 57-64, use a triangle to simplify each expression.
Where applicable, state the range of x’s for which the simplifica-

tion holds.
57. cos (sin"" x) 58. cos (tan™!x)

59. tan (sec™!x) 60. cot (cos™! x)

61. sin (cos’1 % 62. cos <Sil’1_] %)

)

63. tan (cos‘1

ullw

) 64. csc <sin_l

[N S)
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In exercises 65-68, use a graphing calculator or computer to
determine the number of solutions of each equation, and
numerically estimate the solutions (x is in radians).

65. 2cosx=2—x 66. 3sinx =x

67. cosx=x%>—-2 68. sinx =12

APPLICATIONS

69. A person sitting 2 km from a rocket launch site measures
20° up to the current location of the rocket. How high up is
the rocket?

70. A person who is 6 ft tall stands 4 ft from the base of a
light pole and casts a 2-ft-long shadow. How tall is the
light pole?

71. A surveyor stands 80 ft from the base of a govern-
mental building and measures an angle of 50° to the top
of the steeple on top of the building. The surveyor figures
that the center of the steeple lies 20 ft inside the front of the
structure. Find the distance from the ground to the top of
the steeple.

72. Suppose that the surveyor of exercise 71 estimates that the
center of the steeple lies between 20’ and 21’ inside the
front of the structure. Determine how much the extra foot
would change the calculation of the height of the building.

73. A picture hanging in an art gallery has a frame 20 in high,
and the bottom of the frame is 6 ft above the floor. A person
whose eyes are 6 ft above the floor stands x ft from the wall.
Let A be the angle formed by the ray from the person’s eye
to the bottom of the frame and the ray from the person’s
eye to the top of the frame. Write A as a function of x and

graph y = A(x).

74. In golf, the goal is to hit a ball into a hole of diameter 4.5 in.
Suppose a golfer stands x ft from the hole trying to putt the
ball into the hole. A first approximation of the margin of
error in a putt is to measure the angle A formed by the ray
from the ball to the right edge of the hole and the ray from
the ball to the left edge of the hole. Find A as a function
of x.

75. In an AC circuit, the voltage is given by v(t) = v, sin(2zft),
where v, is the peak voltage and f is the frequency in Hz.

A voltmeter actually measures an average (called the root-

mean-square) voltage, equal to v,/ \/E . If the voltage has
amplitude 170 and period 7 /30, find the frequency and me-
ter voltage.

76. An old-style LP record player rotates records at 33% rpm
(revolutions per minute). What is the period (in minutes) of
the rotation? What is the period for a 45-rpm record?

77. Suppose that the ticket sales of an airline (in thousands of
dollars) is given by s(f) = 110 + 2¢ + 15 sin (%ﬂi), where ¢ is
measured in months. What real-world phenomenon might
cause the fluctuation in ticket sales modeled by the sine
term? Based on your answer, what month corresponds to
t = 0? Disregarding seasonal fluctuations, by what amount
is the airline’s sales increasing annually?

78. Piano tuners sometimes start by striking a tuning fork and
then the corresponding piano key. If the tuning fork and
piano note each have frequency 8, then the resulting sound
is sin 8t 4 sin 8t. Graph this. If the piano is slightly out-of-
tune at frequency 8.1, the resulting sound is sin 8¢ + sin 8.1¢.
Graph this and explain how the piano tuner can hear the
small difference in frequency.

EXPLORATORY EXERCISES

1. Inhisbook and video series The Ring of Truth, physicist Philip
Morrison performed an experiment to estimate the circum-
ference of the earth. In Nebraska, he measured the angle
to a bright star in the sky, then drove 370 mi due south into
Kansas and measured the new angle to the star. Some geom-
etry shows that the difference in angles, about 5.02°, equals
the angle from the center of the earth to the two locations
in Nebraska and Kansas. If the earth is perfectly spherical
(it’s not) and the circumference of the portion of the circle
measured out by 5.02° is 370 mi, estimate the circumference
of the earth. This experiment was based on a similar exper-
iment by the ancient Greek scientist Eratosthenes. The an-
cient Greeks and the Spaniards of Columbus’ day knew that
the earth was round, they just disagreed about the circum-
ference. Columbus argued for a figure about half of the ac-
tual value, since a ship couldn’t survive on the water long
enough to navigate the true distance.

2. An oil tank with circular cross sections lies on its side. A
stick is inserted in a hole at the top and used to measure
the depth d of oil in the tank. Based on this measurement,
the goal is to compute the percentage of oil left in the tank.

4—&.—»‘

To simplify calculations, suppose the circle is a unit circle
with center at (0, 0). Sketch radii extending from the origin
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to the top of the oil. The area of oil at the bottom equals the
area of the portion of the circle bounded by the radii minus
the area of the triangle formed above the oil in the figure.

4—&—»‘

Start with the triangle, which has area one-half base
times height. Explain why the height is 1 —d. Find a
right triangle in the figure (there are two of them) with
hypotenuse 1 (the radius of the circle) and one verti-
cal side of length 1 —d. The horizontal side has length
equal to one-half the base of the larger triangle. Show
that this equals 4/1—(1—d)2. The area of the por-
tion of the circle equals #6/2x =0/2, where 0 is the
angle at the top of the triangle. Find this angle as a

function of d. (Hint: Go back to the right triangle used above
with upper angle 6 /2.) Then find the area filled with oil and
divide by 7 to get the portion of the tank filled with oil.

. Computer graphics can be misleading. This exercise works

best using a “disconnected” graph (individual dots, not
connected). Graph y = sinx? using a graphing window for
which each pixel represents a step of 0.1 in the x- or
y-direction. You should get the impression of a sine wave
that oscillates more and more rapidly as you move to the
left and right. Next, change the graphing window so that
the middle of the original screen (probably x = 0) is at the
far left of the new screen. You will likely see what appears to
be a random jumble of dots. Continue to change the graph-
ing window by increasing the x-values. Describe the pat-
terns or lack of patterns that you see. You should find one
pattern that looks like two rows of dots across the top and
bottom of the screen; another pattern looks like the origi-
nal sine wave. For each pattern that you find, pick adjacent
points with x-coordinates a and b. Then change the graph-
ing window so that # < x < b and find the portion of the
graph that is missing. Remember that, whether the points
are connected or not, computer graphs always leave out
part of the graph; it is part of your job to know whether
or not the missing part is important.
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Exponential and Logarithmic Functions

Some bacteria reproduce very quickly, as you may have discovered if you have ever had
an infected cut or strep throat. Under the right circumstances, the number of bacteria
in certain cultures will double in as little as an hour. In this section, we discuss some
functions that can be used to model such rapid growth.

Suppose that initially there are 100 bacteria at a given site and the population dou-
bles every hour. Call the population function P(f), where ¢ represents time (in hours)
and start the clock running at time ¢ = 0. Since the initial population is 100, we have
P(0) = 100. After 1 hour, the population has doubled to 200, so that P(1) = 200. After
another hour, the population will have doubled again to 400, making P(2) = 400 and
SO on.

To compute the bacterial population after 10 hours, you could calculate the
population at 4 hours, 5 hours and so on, or you could use the following shortcut. To
find P(1), double the initial population, so that P(1) = 2 - 100. To find P(2), double the
population at time ¢ = 1, so that P(2) = 2 - 2 - 100 = 22 - 100. Similarly, P(3) = 2° - 100.
This pattern leads us to

P(10) = 2'° . 100 = 102,400.
Observe that the population can be modeled by the function
P(t) = 2! - 100.

We call P(t) an exponential function because the variable ¢ is in the exponent. There
is a subtle question here: what is the domain of this function? We have so far used
only integer values of #, but for what other values of t does P(f) make sense? Certainly,
rational powers make sense, as in P(1/2) = 21/2..100, where 21/2 = \/5 This says that
the number of bacteria in the culture after a half hour is approximately

P(1/2) = 21/2 . 100 = v/2 - 100 = 141.

Copyright © McGraw-Hill Education
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It’s a simple matter to interpret fractional powers as roots. For instance,
/2 \/E,
/3 = {/;,
2= 2 = (3%
B =31/ = Vst

and so on. But, what about irrational powers? They are harder to define, but they work
exactly the way you would want them to. For instance, since  is between 1.14 and 1.15,
27 is between 2314 and 2315, In this way, we define 2* for x irrational to fill in the gaps
in the graph of y = 2* for x rational. That is, if x is irrational and a < x < b, for rational
numbers g and b, then 27 < 2% < 2b,

If for some reason you wanted to find the bacterial population after z hours, you
can use your calculator or computer to obtain the approximate population:

P(r) =27 - 100 =~ 882.

For your convenience, we now summarize the usual rules of exponents.

RULES OF EXPONENTS (FOR x, y > 0)

- For any integers m and n (n > 2),

2 5 = (5
« For any real number p,
xP = xl—p, (xy) =+ -y?  and <£>P = ﬁ.
+ For any real numbers p and g,
()1 = xP9.
+ For any real numbers p and g,

xP _
o =P and L = 7

x1

Throughout your calculus course, you will need to be able to quickly convert back and
forth between exponential form and fractional or root form.

EXAMPLE 4.1 Converting Expressions to Exponential Form

2
Convert each to exponential form: (a) 3\/;, (b) i, (c) ol and (d) (2¥ - 23+%)2,

e

Solution For (a), simply leave the 3 alone and convert the power:
3Vx% = 3x5/2,

For (b), use a negative exponent to write x in the numerator:

- LI 5x71/3,

X

For (c), first separate the constants from the variables and then simplify:

3¢ 32 _3.aap_ 35
25 2¢72 72 2"

For (d), first work inside the parentheses and then square:

(2x . 23+x)2 — (2X+3+X)2 — (22x+3)2 — 24x+6' -
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In general, we have the following definition.

DEFINITION 4.1

For any constants 2 # 0 and b > 0, the function f(x) = a - b* is called an
exponential function. Here, b is called the base and x is the exponent.

Be careful to distinguish between algebraic functions such as f(x) = x> and
g(x) = x*/* and exponential functions. For exponential functions such as h(x) = 2%, the
variable is in the exponent (hence the name), instead of in the base. Also, notice that
the domain of an exponential function is the entire real line, (—oo0, o0), while the range
is the open interval (0, o), since b* > 0 for all x.

While any positive real number can be used as a base for an exponential func-
tion, three bases are the most commonly used in practice. Base 2 arises naturally when
analyzing processes that double at regular intervals (such as the bacteria at the begin-
ning of this section). Our standard counting system is base 10, so this base is com-
monly used. However, far and away the most useful base is the irrational number e.
Like z, the number e has a surprising tendency to occur in important calculations. We
define e by

e= lim <1+%>". 4.1)

n—-o0

Note that equation (4.1) has at least two serious shortcomings. First, we have not yet

said what the notation lim means. Second, it’s unclear why anyone would ever
n—oo

define a number in such a strange way.

It suffices for the moment to say that equation (4.1) means that e can be approx-
imated by calculating values of (1 + 1/n)" for large values of 1 and that the larger the
value of n, the closer the approximation will be to the actual value of e. In particular, if
you look at the sequence of numbers (1 +1/2)2, (1 +1/3)3, (1 + 1/4)* and so on, they
will get progressively closer and closer to (i.e., home in on) the irrational number e.

To get an idea of the value of ¢, compute several of these numbers:

(1 + 11—0)10 =25937...,

1 1000
L\ 07169
<1+1000> 2.7169

1 10,000
1 —2.7181...
< * 10,000)

and so on. You should compute enough of these values to convince yourself that the
first few digits of the decimal representation of ¢ (e &~ 2.718281828459 . . .) are correct.

EXAMPLE 4.2 Computing Values of Exponentials
Approximate ¢*, e=1/° and e?.

Solution From a calculator, we find that
et =c-e-e-en~54.598.

From the usual rules of exponents,

/5 = % =L ~o0s81873.
e /5 5 P

(On a calculator, it is convenient to replace —1/5 with —0.2.) Finally, =1 m_ |
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The graphs of exponential functions summarize many of their important properties.

EXAMPLE 4.3 Sketching Graphs of Exponentials

Sketch the graphs of the exponential functions y = 2%,y =¢*, y = e, y= e
y=(1/2)*andy =e™".

Solution Using a calculator or computer, you should get graphs similar to those
that follow.

Yy Yy
A A
30+ 304+
20+ 20+
10+ 10+
—t—t—t—tt—+——1>x 1>
-4 =2 2 4 -4 =2 2 4
FIGURE 1.53a FIGURE 1.53b
y:ZX y:ex
Yy Yy
A A
30+ 30+
20+ 20+
104 10—/
11> ettt
-4 =2 2 4 -4 =2 2 4
FIGURE 1.54a FIGURE 1.54b
y=82x y=€x/2
Yy Yy
A A
30+ 304+
20+ 20+
10+ 10+
—t———t— 1> ——t—t—t—Ft—t+—t—+—1>x
-4 =2 2 4 =AWR=D 2 4
FIGURE 1.55a FIGURE 1.55b
y=@1/2) y=e>

Notice that each of the graphs in Figures 1.53a, 1.53b, 1.54a and 1.54b starts very
near the x-axis (reading left to right), passes through the point (0, 1) and then rises
steeply. This is true for all exponentials with base greater than 1 and with a positive
coefficient in the exponent. Note that the larger the base (e > 2) or the larger the
coefficient in the exponent (2 > 1 > 1/2), the more quickly the graph rises to the
right (and drops to the left). Note that the graphs in Figures 1.55a and 1.55b are the
mirror images in the y-axis of Figures 1.53a and 1.53b, respectively. The graphs rise
as you move to the left and drop toward the x-axis as you move to the right. It’s

worth noting that by the rules of exponents, (1/2)* =27 and (1/e)* =e¢™. m___ |
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In Figures 1.53-1.55, each exponential function is one-to-one and, hence, has an
inverse function. We define the logarithmic functions to be inverses of the exponential
functions.

DEFINITION 4.2

For any positive number b # 1, the logarithm function with base b, written log; x,
is defined by

y=log,x ifandonlyif x="bY.

That is, the logarithm log;, x gives the exponent to which you must raise the base b
to get the given number x. For example,

log;p10 =1 (since 10! = 10),
log;100 = 2 (since 10 = 100),
logy, 1000 = 3 (since 10° = 1000)

and so on. The value of log;, 45 is less clear than the preceding three values, but the
idea is the same: you need to find the number y such that 10 = 45. The answer lies
between 1 and 2, but to be more precise, you will need to employ trial and error. You
should get log;; 45 ~ 1.6532.

Observe from Definition 4.2 that for any base b > 0(b # 1), if y = log,x, then
x =Y > 0. That is, the domain of f(x) = log;, x is the interval (0, o). Likewise, the range
of f is the entire real line, (—oo, o).

As with exponential functions, the most useful bases turn out to be 2, 10, and e.
We usually abbreviate log,, x by log x. Similarly, log, x is usually abbreviated In x (short
for natural logarithm).

EXAMPLE 4.4 Evaluating Logarithms
Without using your calculator, determine log(1/10), 10g(0.001), Ine and In ¢3.

Solution Since1/10 = 1071, log(1/10) = —1. Similarly, since 0.001 = 10~3, we have
that log(0.001) = —3. Since Ine = log, ¢!, Ine = 1. Similarly, Ine> =3. m |

We want to emphasize the inverse relationship defined by Definition 4.2. That is,
b* and logy, x are inverse functions for any b > 0 (b # 1).
In particular, for the base e, we have

In

e =x foranyx>0 and In(¢) =x forany x. (4.2)

We demonstrate this as follows. Let

y =Inx =log, x.
By Definition 4.2, we have that
x=e¥ =%,

We can use this relationship between natural logarithms and exponentials to solve
equations involving logarithms and exponentials, as in examples 4.5 and 4.6.

EXAMPLE 4.5 Solving a Logarithmic Equation
Solve the equation In(x + 5) = 3 for x.

Solution Taking the exponential of both sides of the equation and writing things
backward (for convenience), we have

3 In(x+5)

e =e =x+5

from (5.2). Subtracting 5 from both sides gives us

e —-5=x. m
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FIGURE 1.56a
y =logx
Y
2__
1__
t t } —» 2
1 2 3 4 5
_1__
_2_
_3_
FIGURE 1.56b
y=Inx

EXAMPLE 4.6 Solving an Exponential Equation

X+4

Solve the equation e*** = 7 for x.

Solution Taking the natural logarithm of both sides and writing things backward
(for simplicity), we have from (4.2) that

In7 =In () = x + 4.
Subtracting 4 from both sides yields

In7—4=x. m

As always, graphs provide excellent visual summaries of the important properties
of a function.

EXAMPLE 4.7 Sketching Graphs of Logarithms
Sketch graphs of y = logx and y = Inx, and briefly discuss the properties of each.

Solution From a calculator or computer, you should obtain graphs resembling those
in Figures 1.56a and 1.56b. Notice that both graphs appear to have a vertical asymp-
tote atx = 0 (why would that be?), cross the x-axis atx = 1 and very gradually increase
as x increases. Neither graph has any points to the left of the y-axis, since log xand In x
are defined only for x > 0. The two graphs are very similar, although not identical. m__|

The properties just described graphically are summarized in Theorem 4.1.

THEOREM 4.1
For any positive base b # 1,

(i) logyx is defined only for x > 0,
(i) log,1=0and
(iii) if b > 1, thenlog,x < 0 for 0 < x <1 and log, x > 0 for x > 1.

PROOF

(i) Note that since b > 0, b¥ > 0 for any y. So, if log, x = y, then x = b¥ > 0.
(ii) Since b° = 1 for any number b # 0, log, 1 = 0 (i.e., the exponent to which you raise
the base b to get the number 1 is 0).
(iii) We leave this as an exercise. m

All logarithms share a set of defining properties, as stated in Theorem 4.2.

THEOREM 4.2
For any positive base b # 1 and positive numbers x and y, we have
(i) log,(xy) = log, x +log, y,

(i) logy(x/y) = log, x —log; y and
(iii) log,(x¥) = ylog x.

As with most algebraic rules, each one of these properties can dramatically simplify

calculations when it applies.
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EXAMPLE 4.8 Simplifying Logarithmic Expressions
Write each as a single logarithm: (a) log, 27* — log, 3* and (b) In8 — 31n (1/2).

Solution First, note that there is more than one order in which to work each prob-
lem. For part (a), we have 27 = 3% and so, 27* = (3%)* = 3%. This gives us

log, 27* — log, 3* = log, 3°* — log, 3
= 3xlog, 3 — xlog, 3 = 2xlog, 3 = log, 3%*.
For part (b), note that 8 = 2% and 1/2 = 271. Then,
In8-3In(1/2) =31In2 —3(-1n2)
=3I2+3Mm2=6m2=m2°=In64. m |

In some circumstances, it is beneficial to use the rules of logarithms to expand a
given expression, as in example 4.9.

EXAMPLE 4.9 Expanding a Logarithmic Expression

!
Use the rules of logarithms to expand the expression In <—Z> .
z

Solution From Theorem 4.2, we have that

Oyt 3.4 5 3 4 5

In{ — =In(x’y*) = In(z’) =In(x°) + In (y*) — In (°)
z

=3Inx+4Iny—5Inz. m

Using the rules of exponents and logarithms, we can rewrite any exponential as
an exponential with base e, as follows. For any base a > 0, we have

This follows from Theorem 4.2 (iii) and the fact that e™¥ = y, for all y > 0.

EXAMPLE 4.10 Rewriting Exponentials as Exponentials with Base e
Rewrite the exponentials 2*, 5 and (2/5)* as exponentials with base e.

Solution From (4.3), we have
2% — eln(2x) [ 4 exln2

X
5Y — eln(S ) — exlnS

and

(2)" — @/ _ pxIn(2/5).

5 |

Just as we can rewrite an exponential with any positive base in terms of an expo-
nential with base ¢, we can rewrite any logarithm in terms of natural logarithms, as
follows. We will next show that

Inx

—, ifb>0,b#1and x> 0. (4.4)
Inb

log, x =

Let y = logy, x. Then by Definition 4.2, we have that x = 1¥. Taking the natural logarithm
of both sides of this equation, we get by Theorem 4.2 (iii) that

Inx =In(®Y) = yInb.
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Gateway Arch

Dividing both sides by In b (since b # 1, In b # 0) gives us

_Inx
ST
establishing (4.4).
Equation (4.4) is useful for computing logarithms with bases other than e or 10.
This is important since, more than likely, your calculator has keys only for In x and log
x. We illustrate this idea in example 4.11.

EXAMPLE 4.11 Approximating the Value of Logarithms
Approximate the value of log; 12.

Solution From (4.4), we have

In12
In7

log; 12 = ~ 1.2769894. -

Hyperbolic Functions

There are two special combinations of exponential functions, called the hyperbolic
sine and hyperbolic cosine functions, that have important applications. For instance,
the Gateway Arch in Missouri was built in the shape of a hyperbolic cosine graph.
(See the photograph in the margin.) The hyperbolic sine function [denoted by sinh (x)]
and the hyperbolic cosine function [denoted by cosh (x)] are defined by

2 — gl and coshx = a +26 x.

Graphs of these functions are shown in Figures 1.57a and 1.57b. The hyperbolic func-
tions (including the hyperbolic tangent, tanh x, defined in the expected way) are often
convenient to use when solving equations. For now, we verify several basic properties
that the hyperbolic functions satisfy in parallel with their trigonometric counterparts.

sinhx =

Y Y
A A
10+ 10+
5+ 5+
f f f —» 2 t t t —» X
—4 -2 2 4 —4 -2 2 4
—5+ —5+
—10+ —10r
FIGURE 1.57a FIGURE 1.57b
y = sinhx y = coshx

EXAMPLE 412 Computing Values of Hyperbolic Functions

Compute f(0), f(1) and f(—1), and determine how f(x) and f(—x) compare for each
function: (a) f(x) = sinhx and (b) f(x) = coshx.

eV — 0 1-1

Solution For part (a), we have sinh 0 = 7 =5 = 0. Note that this
1 o
means that sinh 0 = sin 0 = 0. Also, we have sinh1 = €€ 5 1.18, while
-1 _ 1
sinh (-1) = ¢ 7 ¢ ~ —1.18. Notice that sinh (=1) = —sinh 1. In fact, for any x,
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Year  U.S. Population

1790 3,929,214
1800 5,308,483
1810 7,239,881
1820 9,638,453
1830 12,866,020
1840 17,069,453
1850 23,191,876
1860 31,443,321

W W
S Gt
! 1

251

= =
S O
| 1

U.S. population (in millions)
@ 3

12345678
Number of decades
since 1780

FIGURE 1.58

U.S. Population 1790-1860

e—x _ ex _(ex _ e—x)

sinh (—x) = = 5 = —sinhx.
[The same rule holds for the sine function: sin (—x) = —sinx.] For part (b), we have
0, ,—0
cosh0 = ¢ +28 = % = 1. Note that this means that cosh0 = cos 0 = 1. Also,
1, ,-1 -1, ,1
we have cosh1 = % ~ 1.54, while cosh (-1) = % ~ 1.54. Notice that

cosh (—1) = cosh 1. In fact, for any x,
e+t eF4e™
2 2

[The same rule holds for the cosine function: cos (—x) = cosx.] m

= coshx.

cosh (—x) =

Fitting a Curve to Data

You are familiar with the idea that two points determine a straight line. As we see in
example 4.13, two points will also determine an exponential function.

EXAMPLE 4.13 Matching Data to an Exponential Curve

Find the exponential function of the form f(x) = ae’® that passes through the points
(0,5) and (3, 9).

Solution We must solve for 2 and b, using the properties of logarithms and
exponentials. First, for the graph to pass through the point (0, 5), this means that

5=f(0) = e’ 0 =g
so that 2 = 5. Next, for the graph to pass through the point (3, 9), we must have
9=f(3) = e’ = 5%,

To solve for b, we divide both sides of the equation by 5 and take the natural
logarithm of both sides, which yields

ln<2) =1Ine = 3b,
5

from (4.2). Finally, dividing by 3 gives us the value for b:

0= 1)

1
Thus, f(x) = 563" m

Consider the population of the United States from 1790 to 1860, found in the ac-
companying table. A plot of these data points can be seen in Figure 1.58 (where the
vertical scale represents the population in millions). This shows that the population
was increasing, with larger and larger increases each decade. If you sketch an imag-
inary curve through these points, you will probably get the impression of a parabola
or perhaps the right half of a cubic or exponential. And that’s the question: are these
data best modeled by a quadratic function, a cubic function, an exponential function
or what?

We can use the properties of logarithms from Theorem 4.2 to help determine
whether a given set of data is modeled better by a polynomial or an exponential func-
tion, as follows. Suppose that the data actually come from an exponential, say, y = ae®*
(i.e., the data points lie on the graph of this exponential). Then,

Iny = In (ae"™) = Ina + Ine™ = Ina + bx.
If you draw a new graph, where the horizontal axis shows values of x and the vertical

axis corresponds to values of In y, then the graph will be the line In y = bx + ¢ (where
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the constant ¢ = Ina). On the other hand, suppose the data actually came from a poly-
nomial. If y = bx" (for any n), then observe that

Iny=In(x") =Inb+Inx"=Inb+nlnx

In this case, a graph with horizontal and vertical axes corresponding to x and In y,
respectively, will look like the graph of a logarithm, In ¥ = n In x 4+ c. Such semi-log
graphs (i.e., graphs of In y versus x) let us distinguish the graph of an exponential
from that of a polynomial: graphs of exponentials become straight lines, while graphs
of polynomials (of degree > 1) become logarithmic curves. Scientists and engineers
frequently use semi-log graphs to help them gain an understanding of physical phe-
nomena represented by some collection of data.

EXAMPLE 4.14 Using a Semi-Log Graph to Identify a Type of

47 Function
T °
34 L ° Determine whether the population of the United States from 1790 to 1860 was
o increasing exponentially or as a polynomial.
L]
2+ °

Solution As already indicated, the trick is to draw a semi-log graph. That is,

J instead of plotting (1, 3.9) as the first data point, plot (1,1In3.9) and so on. A
semi-log plot of this data set is seen in Figure 1.59. Although the points are not
exactly colinear (how would you prove this?), the plot is very close to a straight line

1234056 78 with In y-intercept of 1 and slope 0.3. You should conclude that the population is

Number of decades well modeled by an exponential function. The exponential model would be
since 1780 y=P{) = ae’, where t represents the number of decades since 1780. Here, b is the

slope and In 4 is the In y-intercept of the line in the semi-log graph. That is, b ~ 0.3

and Ina = 1 (why?), so that a = e. The population is then modeled by

Natural logarithm of
U.S. population (millions)

FIGURE 1.59
Semi-log plot of U.S. population

P(t) = e- "3 million. m

EXERCISES 1.4

WRITING EXERCISES ;::r ;:(ercises 7-12, convert each expression into exponential
1. Starting from a single cell, a human being is formed by 50
generations of cell division. Explain why after n divisions 7. lz 8. \3/3(_2 9. %
there are 2" cells. Guess how many cells will be present after x x
50 divisions, then compute 2%°. Briefly discuss how rapidly 10 4 1, L 12. 2
exponential functions increase. x? 2\/} 2\/;
2. Explain why the graphs of f(x) = 27 and g(x) = (%) are
the same.
3. Compare f(x) =x> and g(x) =2 for x= %, x=1x=2, In exercises 13-16, find the integer value of the given expression
x =3 and x = 4. In general, which function is bigger for without using a calculator.
large values of x? For small values of x?
. . ! 13. #31 14, 823 5 VB -
4. Compare f(x)=2* and g(x)=3" for x=-2x= Y 21/2 (1/3)2

x= % and x = 2. In general, which function is bigger for
negative values of x? For positive values of x?

In exercises 17-20, use a calculator or computer to estimate each

value.
In exercises 1-6, convert each exponential expression into frac- n s
tional or root form. 17. 2¢7Y 18. 4%
1. 27 2. 472 3. 372
19. 22 20. 2
4. 6% 5. 5%/3 6. 472/3 e \/;
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In exercises 21-26, sketch graphs of the given functions and
compare the graphs.

)
22. f(x) = 2¢*/* and g(x) = 4¢*/2
23. f(x) =3¢ and g(x) = 2¢™>
24. f(x) = e™ and g(x) = e¥/4
25. f(x) =In2x and g(x) = Inx?
26. f(x) = e?"* and g(x) = x?

In exercises 27-36, solve the given equation for x.

27. ¥ =2 28. ¢ =3

29. (x> -1)=0 30. xe* +2e =0

31. 4lnx=-8 32. ¥*Inx—9Inx=0
33, o2nx — 4 34. In (%) = 6

35. =14 6¢7" 36. Inx+In(x—1) =1n2

In exercises 37 and 38, use the definition of logarithm to deter-
mine the value.

37. (a)log; 9 (b)log, 64 (c)log, %
38. (a)log, % (b) log,2  (c)logy 3

In exercises 39 and 40, use equation (5.4) to approximate the
value.
39. (a)log;7 (b)log, 60 (c)log, 21—4

40. (a) log, % (b) log, 3 (c) log, 8

In exercises 41-46, rewrite the expression as a single logarithm.

41. In3 —1In4 42. 2In4 —1n3
43. §1n4—1n2 44, 31n2—1n§
45. ln%+4ln2 46. In9—21In3

In exercises 47-50, find a function of the form f(x) = ae™ with
the given function values.

47. f(0)=2,f(2) =6
49. f(0)=4,fQ2) =2

48. f(0)=3,f(3) =4
50. f(0)=5,f(1) =2
Exercises 51-54 refer to the hyperbolic functions.

51. Show that the range of the hyperbolic cosine is coshx > 1
and the range of the hyperbolic sine is the entire real line.

52. Show that cosh® x — sinh® x = 1 for all x.
53. Find all solutions of sinh (x> — 1) = 0.
54. Find all solutions of cosh (3x + 2) = 0.

APPLICATIONS

55. A fast-food restaurant gives every customer a game ticket.
With each ticket, the customer has a 1-in-10 chance of

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

winning a free meal. If you go 10 times, estimate your
chances of winning at least one free meal. The exact prob-
ability is 1 — (%)
to your guess.

In exercise 55, if you had 20 tickets with a 1-in-20 chance of
winning, would you expect your probability of winning at
least once to increase or decrease? Compute the probability

20
19 .
1- (E) to find out.

10
. Compute this number and compare it

In general, if you have n chances of winning with a 1-in-n
chance on each try, the probability of winning at least once

is1- (1 - %)rl. As n gets larger, what number does this

probability approach? (Hint: There is a very good reason
that this question is in this section!)

If y=a-x", show that Iny=Ina+mlnx. If v=1Iny,
u=Inx and b =Ina, show that v = mu + b. Explain why
the graph of v as a function of u would be a straight line.
This graph is called the log-log plot of i and x.

For the given data, compute v = Iny and u = Inx, and plot
points (4, v). Find constants m and b such that v = mu + b
and use the results of exercise 58 to find a constant a such
thaty =a-x".

X 2.2 2.4 2.6 2.8 3.0 3.2
y | 14.52 | 1728 | 20.28 | 23.52 | 27.0 | 30.72

Repeat exercise 59 for the given data.

x| 28 3.0 3.2 3.4 3.6 3.8
y | 937 | 10.39 | 11.45 | 12.54 | 13.66 | 14.81

Construct a log-log plot (see exercise 58) of the U.S. popu-
lation data in example 4.14. Compared to the semi-log plot
of the data in Figure 1.59, does the log-log plot look linear?
Based on this, are the population data modeled better by an
exponential function or a polynomial (power) function?
Construct a semi-log plot of the data in exercise 59.
Compared to the log-log plot already constructed, does this
plot look linear? Based on this, are these data better mod-
eled by an exponential or power function?

The concentration [H*] of free hydrogen ions in a chem-
ical solution determines the solution’s pH, as defined by
pH = —log [H*]. Find [H*] if the pH equals (a) 7, (b) 8 and
(c) 9. For each increase in pH of 1, by what factor does [H*]
change?

Gastric juice is considered an acid, with a pH of about 2.5.
Blood is considered alkaline, with a pH of about 7.5. Com-
pare the concentrations of hydrogen ions in the two sub-
stances (see exercise 63).

The Richter magnitude M of an earthquake is defined in
terms of the energy E in joules released by the earthquake,
with log,; E = 4.4 4+ 1.5M. Find the energy for earthquakes
with magnitudes (a) 4, (b) 5 and (c) 6. For each increase in
M of 1, by what factor does E change?

The decibel level of a noise is defined in terms of the in-
tensity I of the noise, with dB = 10log (I/1,). Here, I, =
10~'2 W/m? is the intensity of a barely audible sound. Com-
pute the intensity levels of sounds with (a) dB = 80, (b) dB
=90 and (c) dB = 100. For each increase of 10 decibels, by
what factor does I change?
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67.

68.

69.

70.

The Gateway Arch is both 630 ft wide and 630 ft tall. (Most
people think that it looks taller than it is wide.) One model

for the outline of the arch is y = 757.7 — 127.7 cosh (12’; 7)

for y > 0. Use a graphing calculator to approximate the x-
and y-intercepts and determine if the model has the correct
horizontal and vertical measurements.

To model the outline of the Gateway Arch with a parabola,
you can start with y = —c(x + 315)(x — 315) for some con-
stant c. Explain why this gives the correct x-intercepts.
Determine the constant c that gives a y-intercept of 630.
Graph this parabola and the hyperbolic cosine in exer-
cise 67 on the same axes. Are the graphs nearly identical or
very different?

On a standard piano, the A below middle C produces a
sound wave with frequency 220 Hz (cycles per second). The
frequency of the A one octave higher is 440 Hz. In general,
doubling the frequency produces the same note an octave
higher. Find an exponential formula for the frequency f as
a function of the number of octaves x above the A below
middle C.

There are 12 notes in an octave on a standard piano.
Middle C is 3 notes above A (see exercise 69). If the notes are
tuned equally, this means that middle C is a quarter-octave
above A. Use x = + in your formula from exercise 69 to
estimate the frequency of middle C.

EXPLORATORY EXERCISES

1. Graph y = x* and y = 2* and approximate the two positive

solutions of the equation x*> = 2*. Graph y = x° and y = 3%,
and approximate the two positive solutions of the equation
x® = 3%. Explain why x = a will always be a solution of x* =
a*,a > 0. What is different about the role of x = 2 as a solu-
tion of x? = 2¥ compared to the role of x = 3 as a solution
of x* = 3"? To determine the a-value at which the change
occurs, graphically solve x* =a* for 1 =2.1,2.2,...,2.9,
and note that 2 = 2.7 and a = 2.8 behave differently. Con-
tinue to narrow down the interval of change by testing
a=271,272,...,2.79. Then guess the exact
value of a.

2. Graph y = Inx and describe the behavior near x = 0. Then

graph y = xInx and describe the behavior near x = 0. Re-
peat this for y = x2Inx, y = /2 Inx and y = x* Inx for a va-
riety of positive constants 4. Because the function “blows
up” at x = 0, we say that y = Inx has a singularity at x = 0.
The order of the singularity at x = 0 of a function f(x) is
the smallest value of a such that y = x*f(x) doesn’t have a
singularity at x = 0. Determine the order of the singularity
atx =0 for (a) f(x) = %, (b) f(x) = xl2 and (c) f(x) = xia The
higher the order of the singularity, the “worse” the singu-
larity is. Based on your work, how bad is the singularity of
y=Inxatx=0?
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Transformations of Functions

You are now familiar with a long list of functions: polynomials, rational functions,
trigonometric functions, exponentials and logarithms. One important goal of this
course is to more fully understand the properties of these functions. To a large extent,
you will build your understanding by examining a few key properties of functions.

We expand on our list of functions by combining them. We begin in a straightfor-
ward fashion with Definition 5.1.

DEFINITION 5.1

Suppose that f and g are functions with domains D; and D,, respectively. The
functions f + g f — g and f - g are defined by

and (f -9 =f(x) - gx),

(o2

for all x in Dy N D, such that g(x) # 0.

Copyright © McGraw-Hill Education
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S e

9(x)

x—> 9

(fog)(x) = f(g(x)

In example 5.1, we examine various combinations of several simple functions.

EXAMPLE 5.1 Combinations of Functions

If f(x) = x — 3 and g(x) = v/ x — 1, determine the functions f + g 3f — g and é
stating the domains of each.

Solution First, note that the domain of f is the entire real line and the domain of g
is the set of all x > 1. Now,

f+9)=x-3+Vx—-1
and Bf -9 =3x—-3)—Vx—-1=3x-9—-Vx—-1
Notice that the domain of both (f + g) and (3f — ) is {x|x > 1}. For

<Ji) w=t®_ x-3
g g (x) \/x— 1 ’
the domain is {x|x > 1}, where we have added the restriction x # 1 to avoid dividing
by 0. m

Definition 5.1 and example 5.1 show us how to do arithmetic with functions. An
operation on functions that does not directly correspond to arithmetic is the composition
of two functions.

DEFINITION 5.2

The composition of functions f and g, written f o g, is defined by

(f o)) = fg(x)),

for all x such that x is in the domain of g and g(x) is in the domain of f.

The composition of two functions is a two-step process, as indicated in the margin
schematic. Be careful to notice what this definition is saying. In particular, for f(g(x)) to
be defined, you first need g(x) to be defined, so x must be in the domain of g. Next, f must
be defined at the point g(x), so that the number g(x) will need to be in the domain of f.

EXAMPLE 5.2 Finding the Composition of Two Functions

For f(x) = x> + 1 and g(x) = V/x — 2, find the compositions f o g and g o f and
identify the domain of each.

Solution First, we have

(fog)) =fgM) =f(Vx—2)
=(Vx-22+1=x-2+1=x-1.

It’s tempting to write that the domain of f o ¢ is the entire real line, but look more
carefully. Note that for x to be in the domain of g, we must have x > 2. The domain
of f is the whole real line, so this places no further restrictions on the domain of
f og. Even though the final expression x — 1 is defined for all x, the domain of (f 0 g)
is{x|x> 2}

For the second composition,

goN0) =g(f(x) = gl* +1)
=vV@E2+1)-2=Vx2-1.

The resulting square root requires x> — 1 > 0 or |x| > 1. Since the “inside” function
f is defined for all x, the domain of g o f is {x||x| > 1}, which we write in interval

notation as (—oo, =1] U [1, 0). m
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FIGURE 1.60a

y=x

FIGURE 1.60b
y=x>+3

As you progress through the calculus, you will often need to recognize that a given
function is a composition of simpler functions.

EXAMPLE 5.3 Identifying Compositions of Functions

Identify functions f and g such that the given function can be written as (f o g)(x) for

each of (a) Vx2 +1, (b) (ﬁ +1)2, (c) sinx? and (d) cos? x. Note that more than one
answer is possible for each function.

Solution (a) Notice that x* + 1 is inside the square root. So, one choice is to have
g =x*+1and f(x) = /x.

(b) Here, ﬁ + 1 is inside the square. So, one choice is g(x) = ﬁ +1 and
flx)=x2.

(c) The function can be rewritten as sin (x?), with x> clearly inside the sine
function. Then, g(x) = x> and f(x) = sinx is one choice.

(d) The function as written is shorthand for (cos x)2. So, one choice is

g(x) =cosxand f(x) =x%. m

In general, it is quite difficult to take the graphs of f(x) and g(x) and produce the
graph of f(g(x)). If one of the functions f and g is linear, however, there is a simple
graphical procedure for graphing the composition. Such linear transformations are
explored in the remainder of this section.

The first case is to take the graph of f(x) and produce the graph of f(x) + ¢ for some
constant c¢. You should be able to deduce the general result from example 5.4.

EXAMPLE 5.4 Vertical Translation of a Graph

Graph y = x? and y = x? + 3; compare and contrast the graphs.

Solution  You can probably sketch these by hand. You should get graphs like those
in Figures 1.60a and 1.60b. Both figures show parabolas opening upward. The main
obvious difference is that x> has a y-intercept of 0 and x> + 3 has a y-intercept of 3.
In fact, for any given value of x, the point on the graph of y = x> + 3 will be plotted
exactly 3 units higher than the corresponding point on the graph of y = x?. This is
shown in Figure 1.61a.

Yy Y
A A
5] ..
Move graph :
up 3 units
20+ :
151
101
5t
————— ——F———>» —t——+— ——F—+—>»x
-4 =2 2 4 -4 -2 2 4
FIGURE 1.61a FIGURE 1.61b
Translate graph up y=x*andy=x*+3

In Figure 1.61b, the two graphs are shown on the same set of axes. To many
people, it does not look like the top graph is the same as the bottom graph moved
up 3 units. This is an unfortunate optical illusion. Humans usually mentally judge
distance between curves as the shortest distance between the curves. For these
parabolas, the shortest distance is vertical at x = 0 but becomes increasingly
horizontal as you move away from the y-axis. The distance of 3 between the
parabolas is measured vertically. W
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Move graph to
the right one unit

FIGURE1.63
Translation to the right

In general, the graph of y = f(x) + ¢ is the same as the graph of y = f(x) shifted up
(if ¢ > 0) or down (if ¢ < 0) by |c| units. We usually refer to f(x) + ¢ as a vertical
translation (up or down, by |c| units).

In example 5.5, we explore what happens if a constant is added to x.

EXAMPLE 5.5 A Horizontal Translation
Compare and contrast the graphs of y = x* and y = (x — 1)2.

Solution The graphs are shown in Figures 1.62a and 1.62b, respectively.

R e —t——1> —t+—

—4 -2 2 4 —4 -2

FIGURE 1.62a

y=x

FIGURE 1.62b
y=(x-1)°

Notice that the graph of y = (x — 1) appears to be the same as the graph of y = x?,
except that it is shifted 1 unit to the right. This should make sense for the
following reason. Pick a value of x, say, x = 13. The value of (x — 1)2 atx =13 is
122, the same as the value of x2 at x = 12, 1 unit to the left. Observe that this same
pattern holds for any x you choose. A simultaneous plot of the two functions

(see Figure 1.63) shows this. m

In general, for ¢ > 0, the graph of y = f(x — ¢) is the same as the graph of y = f(x)
shifted ¢ units to the right. Likewise (again, for ¢ > 0), you get the graph of

y = f(x + ¢) by moving the graph of y = f(x) to the left ¢ units. We usually refer to
f(x—c) and f(x + ¢) as horizontal translations (to the right and left, respectively,
by c units).

To avoid confusion on which way to translate the graph of i = f(x), focus on what
makes the argument (the quantity inside the parentheses) zero. For f(x), this is x = 0,
but for f(x — ¢) you must have x = c to get f(0) [i.e., the same y-value as f (x) when x = 0].
This says that the point on the graph of y = f(x) at x = 0 corresponds to the point on
the graph of y = f(x —¢) at x = c.

EXAMPLE 5.6 Comparing Vertical and Horizontal Translations

Given the graph of y = f(x) shown in Figure 1.64a, sketch the graphs of y = f(x) — 2
andy = f(x —2).

Solution To graph y = f(x) — 2, simply translate the original graph down 2 units, as

shown in Figure 1.64b. To graph y = f(x — 2), simply translate the original graph to
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the right 2 units (so that the x-intercept at x = 0 in the original graph corresponds to
an x-intercept at x = 2 in the translated graph), as seen in Figure 1.64c.

Y Y Y
A A A
15+ 151 15+
10+ 10+ 10+
5+ 5+ 5+
—— —A—t—a ——t—t : —— : ———A—+—u
-3 -1 2 3 -3 W2 -1 f 1 23874 5
—5+ - AN
~10+ ~101 +
~15 ~15+ Ji5t
FIGURE 1.64a FIGURE 1.64b FIGURE 1.64c
y=f y=flx-2 y=flx=2)
[ B
Example 5.7 explores the effect of multiplying or dividing x or y by a constant.
EXAMPLE 5.7 Comparing Some Related Graphs
Compare and contrast the graphs of y = x> — 1,y = 4(x? — 1) and y = (4x)* - 1.
Solution The first two graphs are shown in Figures 1.65a and 1.65b, respectively.
Y Y Y
A A L _ 4(.762 -
101 10+ 0t Y
8+ 32+ 8T
61 24+ o
4__
4t 16+ ) ,
T y=x°—1
2T 8T —t ——
—t —t—>x — —+—> 3 2 - 23
3 -2 -I~"1 2 3 3 2 I 2 3 T
—2+ —8+ —
FIGURE 1.65a FIGURE 1.65b FIGURE 1.65¢
y=x*-1 y=4(2-1) y=x>—Tlandy =4(x*-1)

These graphs look identical until you compare the scales on the y-axes. The scale in
Figure 1.65b is four times as large, reflecting the multiplication of the original function
by 4. The effectlooks different when the functions are plotted on the same scale, asin
Figure 1.65c. Here, the parabolay = 4(x> — 1) looks thinner and has a different
y-intercept. Note that the x-intercepts remain the same. (Why would that be?)

The graphs of y = x> — 1 and y = (4x)? — 1 are shown in Figures 1.66a and
1.66b, respectively (on the following page).

Can you spot the difference here? In this case, the x-scale has now changed, by
the same factor of 4 as in the function. To see this, note that substituting x = 1/4
into (4x)? — 1 produces (1)*> — 1, exactly the same as substituting x = 1 into the
original function. When plotted on the same set of axes (as in Figure 1.66c¢), the
parabola y = (4:x)2 — 1 looks thinner. Here, the x-intercepts are different, but the
y-intercepts are the same.
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Y Y Y
A A A _ (439)2 1
10+ 10+ 01 Y
8+ 8+ 8+
6+ 6+ 6+
41 4t 41
2T 2T T y=a>-1
52 1 s o3 S0t —0dIA2 015 S A s o3
-2+ -2+ -2+
FIGURE 1.66a FIGURE 1.66b FIGURE 1.66¢
y=x*-1 . y=(4x)?-1 y=x*—landy = (4x)> -1
We can generalize the observations made in example 5.7. Before reading our ex-
planation, try to state a general rule for yourself. How are the graphs of y = ¢f(x) and
y = f(cx) related to the graph of y = f(x)?
Y Based on example 5.7, notice that to obtain a graph of i = ¢f(x) for some constant
204 ¢ > 0, you can take the graph of y = f(x) and multiply the scale on the y-axis by c. To
obtain a graph of y = f(cx) for some constant ¢ > 0, you can take the graph of y = f(x)
1 and multiply the scale on the x-axis by 1/c.
These basic rules can be combined to understand more complicated graphs.
10+
EXAMPLE 5.8 A Translation and a Stretching
| Describe how to get the graph of y = 2x? — 3 from the graph of y = x?.
—t—t— —+—+—+»x  Solution You can get from x? to 2x> — 3 by multiplying by 2 and then subtracting
4 2 2 4 3. In terms of the graph, this has the effect of multiplying the y-scale by 2 and then

FIGURE 1.67a
y=x
Yy

A
40+

20T

——1—4 ——+—>x
4 2 2 4

FIGURE 1.67b
y=2x*-3

shifting the graph down by 3 units. (See the graphs in Figures 1.67a and 1.67b.) m__|

EXAMPLE 5.9 A Translation in Both x- and y-Directions
Describe how to get the graph of y = x> + 4x + 3 from the graph of y = x2.

Solution  We can again relate this (and the graph of every quadratic) to the graph
of y = x*. We must first complete the square. Recall that in this process, you take
the coefficient of x (4), divide by 2 (4/2 = 2) and square the result (2> = 4). Add and
subtract this number and then, rewrite the x-terms as a perfect square. We have

y=x>+4x+3=(2+4x+4)—-4+3=(x+2>-1

»
>

204 20

10+ 10

/.

i e e > T
FIGURE1.68a FIGURE 1.68b
y=x y=(x+27>-1
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To graph this function, take the parabola y = x> (see Figure 0.80a) and translate the ‘
graph 2 units to the left and 1 unit down. (See Figure 0.80b.) m

The following table summarizes our discoveries in this section.

Transformations of f(x)

Transformation Form Effect on Graph

Vertical translation fl) +c |c| units up (c > 0) or down (¢ < 0)
Horizontal translation | f(x+ ¢) |c| units left (¢ > 0) or right (c < 0)
Vertical scale cf (x) (c > 0) multiply vertical scale by ¢
Horizontal scale f(ex) (¢ > 0) divide horizontal scale by ¢

You will explore additional transformations in the exercises.

WRITING EXERCISES

1. The restricted domain of example 5.2 may be puzzling.
Consider the following analogy. Suppose you have an air-
plane flight from New York to Los Angeles with a stop for
refueling in Minneapolis. If bad weather has closed the air-
port in Minneapolis, explain why your flight will be can-
celed (or at least rerouted) even if the weather is great in
New York and Los Angeles.

2. Explain why the graphs of y = 4(x> — 1) and y = (4x)* — 1
in Figures 1.65¢ and 1.66¢ appear “thinner” than the graph
ofy=x*-1.

3. As illustrated in example 5.9, completing the square can
be used to rewrite any quadratic function in the form
a(x — d)* + e. Using the transformation rules in this section,
explain why this means that all parabolas (with 2 > 0) will
look essentially the same.

4. Explain why the graph of y = f(x + 4) is obtained by mov-
ing the graph of y = f(x) four units to the left, instead of to
the right.

In exercises 1-6, find the compositions fog and gof, and
identify their respective domains.

1 f)=x+1 g)=+vx-3

EXERCISES 1.5

In exercises 7-16, identify functions f(x) and g(x) such that the
given function equals (f o g)(x).

7. Vx¥*+1 8. Vx+3 . 21
1 x2+1
10. —+1 11 (4x+17°+3 12, 4(x+1)>+3
X
13. sin®x 14. sina 15. ¢+ 16, &2

In exercises 17-22, identify functions f(x), g(x) and h(x) such
that the given function equals [f o (g o h)] (x).

17. 3 18. Ve +1

Vsinx +2
20. InyVx2+1

19. cos®(4x —2)
21. 4¢° -5 22. [tan~! (3x + 1)]*

In exercises 23-30, use the graph of y = f(x) given in the figure
to graph the indicated function.

23. f(x) -3 24. f(x+2) 25. f(x—3)
26. f(x)+2 27. f(2x) 28. 3f(x)
29. —3f(x) +2 30. 3f(x+2)

y

Graph for exercises 23-30
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In exercises 31-38, use the graph of y = f(x) given in the figure
to graph the indicated function.

31. f(x—4) 32. f(x+3) 33. f(2x)
34, f(2x—4) 35. f(3x+3) 36. 3f(v)
37. 2f(x) — 4 38. 3f(x) +3

Yy

Graph for exercises 31-38

In exercises 39-44, complete the square and explain how to
transform the graph of y = x? into the graph of the given
function.

39. f)=x2+2x+1 40. f(x) =x>—4x+4

41. f(x) = x>+ 2x+4 42, f(x) =x2—4x+2

43. f(x) = 2x* +4x +4 44. f(x) =3x* —6x +2

In exercises 45-48, graph the given function and compare to
the graph of y = x2 - 1.

45. f(x) = -2(x*> - 1)

46. f(x) = -3(x*> - 1)

47. f(x) = -3(x2-1)+2

48. f(x) = -2(x>-1) -1

In exercises 49-52, graph the given function and compare to
the graphof y = (x —1)° =1 = 2% — 2.

49. f(x) = (0" = 2(~x)

50. f(x) = —(=x)% + 2(=x)

51 f(x) = (—x+1)° + 2(=x + 1)

52. f(x) = (—=3x)° = 2(-3x) - 3

53. Based on exercises 45-48, state a rule for transforming the
graph of y = f(x) into the graph of y = ¢f (x) for ¢ < 0.

54. Based on exercises 49-52, state a rule for transforming the
graph of y = f(x) into the graph of y = f(cx) for ¢ < 0.

55. Sketch the graph of y = |x|*. Explain why the graph of
y = x| is identical to that of y = x> to the right of the
y-axis. For y = |x|>, describe how the graph to the left of
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the y-axis compares to the graph to the right of the y-axis. In
general, describe how to draw the graph of y = f(|x|) given
the graph of y = f(x).

56. For y = x°, describe how the graph to the left of the y-
axis compares to the graph to the right of the y-axis. Show
that for f(x) = x°, we have f(—x) = —f(x). In general, if you
have the graph of y = f(x) to the right of the y-axis and
f(=x) = —f(x) for all x, describe how to graph y = f(x) to the
left of the y-axis.

57. Iterations of functions are important in a variety of
applications. To iterate f(x), start with an initial value
X, and compute x; = f(xy), x, = f(x;), x3 =f(x,) and so
on. For example, with f(x) =cosx and x; =1, the ite-
rates are x; =cos1= 0.54, x, = cosx; ~ cos0.54 ~ 0.86,
X3 ~ c0s0.86 ~ 0.65 and so on. Keep computing iterates
and show that they get closer and closer to 0.739085. Then
pick your own x, (any number you like) and show that
the iterates with this new x, also converge to 0.739085.

58. Referring to exercise 57, show that the iterates of a function
can be written as x; = f(x,), x, = f(f(xy)), x5 = f(f(f(x,)))
and so on. Graph y = cos (cosx), y = cos (cos (cosx)) and
y = cos (cos (cos (cos x))). The graphs should look more and
more like a horizontal line. Use the result of exercise 57 to
identify the limiting line.

59. Compute several iterates of f(x) = sinx (see exercise 57)
with a variety of starting values. What happens to the it-
erates in the long run?

60. Repeat exercise 59 for f(x) = x2.

61. In cases where the iterates of a function (see exercise 57)
repeat a single number, that number is called a fixed point.
Explain why any fixed point must be a solution of the equa-
tion f(x) = x. Find all fixed points of f(x) = cosx by solv-
ing the equation cos x = x. Compare your results to that of
exercise 57.

62. Find all fixed points of f(x) = sinx (see exercise 61). Com-
pare your results to those of exercise 59.

EXPLORATORY EXERCISES

1. You have explored how completing the square can trans-
form any quadratic function into the form y = a(x — d)* +
e. We concluded that all parabolas with a > 0 look alike.
To see that the same statement is not true of cu-
bic polynomials, graph y=2x* and y =x>—3x. In this
exercise, you will use completing the cube to deter-
mine how many different cubic graphs there are. To
see what “completing the cube” would look like, first
show that (x+a)> = x> + 3ax2 + 3a%x + a3. Use this result
to transform the graph of y =21 into the graphs of
(@ y=x*-3x2+3x—1 and (b) y=x>—3x>+3x+2.
Show that you can’t get a simple transformation to y = x> —
3x% + 4x — 2. However, show that y=x°—3x?+4x—2
can be obtained from y = x* + x by basic transformations.
Show that the following statement is true: any cubic
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(y = ax® + bx? + cx + d) can be obtained with basic transfor-
mations from y = ax® + kx for some constant k.

2. In many applications, it is important to take a section of
a graph (e.g., some data) and extend it for predictions or
other analysis. For example, suppose you have an elec-
tronic signal equal to f(x) = 2x for 0 < x < 2. To predict
the value of the signal at x = —1, you would want to know
whether the signal was periodic. If the signal is periodic,
explain why f(—1) = 2 would be a good prediction. In some
applications, you would assume that the function is
even. That is, f(x) = f(—x) for all x. In this case, you want
f(x) = 2(=x) = —2x for =2 <x < 0. Graph the even extension

~2x if-2<x<0
f(x)_{2x f0<x<2

Find the even extension for (a) f(x) = x> +2x+ 1,0 <x < 2
and (b) f(x) = e, 0<x < 2.

3. Similar to the even extension discussed in exploratory
exercise 2, applications sometimes require a function to
be odd; that is, f(—x) = —f(x). For f(x) =x%, 0 < x < 2, the
odd extension requires that for =2 <x <0, f(x) = —f(-x) =

2 5 = if-2<x<0
—(=x)" = —x* so that f(x) = 2 if0<x<?

y =f(x) and discuss how to graphically rotate the right

half of the graph to get the left half of the graph. Find

the odd extension for (a) f(x) =x*>+2x, 0 <x <2 and

(b) fx) =e*=1,0<x<2.

. Graph

WRITING EXERCISES

The following list includes terms that are defined and theorems
that are stated in this chapter. For each term or theorem, (1) give
a precise definition or statement, (2) state in general terms what
it means and (3) describe the types of problems with which it is
associated.

Slope of a line Parallel lines
Domain Intercepts
Graphing window Local maximum
Inverse function One-to-one function  Periodic function
Sine function Cosine function Arcsine function
e Exponential function Logarithm
Composition

Perpendicular lines
Zeros of a function
Vertical asymptote

TRUE OR FALSE

State whether each statement is true or false and briefly explain
why. If the statement is false, try to “fix it” by modifying the given
statement to a new statement that is true.
1. For a graph, you can compute the slope using any two
points and get the same value.

2. All graphs must pass the vertical line test.

3. A cubic function has a graph with one local maximum and
one local minimum.

4. If a function has no local maximum or minimum, then it is
one-to-one.

5. The graph of the inverse of f can be obtained by reflecting
the graph of f across the diagonal y = x.

6. If f is a trigonometric function, then the solution of the
equation f(x) = 1 is f~(1).

7. Exponential and logarithmic functions are inverses of each
other.

8. All quadratic functions have graphs that look like the
parabola y = x2.

Review Exercises

In exercises 1 and 2, find the slope of the line through the given
points.

1. (2,3),(0,7)

2. (1,4),5,1)

In exercises 3 and 4, determine whether the lines are parallel,
perpendicular or neither.

3. y=3x+landy=3(x—-2)+4

4. y=—2(x+1)—1andy=§x+2

5. Determine whether the points (1, 2), (2, 4) and (0, 6) form
the vertices of a right triangle.

6. The data represent populations at various times. Plot the
points, discuss any patterns and predict the population at
the next time: (0, 2100), (1, 3050), (2, 4100) and (3, 5050).

7. Find an equation of the line through the points indicated in
the graph that follows and compute the y-coordinate corre-
sponding to x = 4.

Y

A

4..

8. For f(x) = x> — 3x — 4, compute £(0), f(2) and f(4).
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In exercises 9 and 10, find an equation of the line with given
slope and point.

9. m=-3, (-1,-1) 10. m=3, (02

In exercises 11 and 12, use the vertical line test to determine
whether the curve is the graph of a function.

y
11. Y

12.

In exercises 13 and 14, find the domain of the given function.

13. f(x) = V4 —x?

In exercises 15-28, sketch a graph of the function showing ex-
trema, intercepts and asymptotes.

15. f(x) =x*+2x—8 16. f(x) =2 —6x+1

17. f(x) =xt =222 +1 18. f(x)=x" -4 +x—1
19. () = x‘fz 20. f(x) = xzx—;xz—z

21. f(x) = sin3x 22. f(x) = tandx

23. f(x) = sinx + 2cosx 24. f(x) = sec2x

25. f(x) = 4e* 26. f(x) = 3¢

27. f(x) = In3x 28. f(x) = e
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29.
30.

31.

32.

Determine all intercepts of y = x> + 2x — 8 (see exercise 15).

Determineallinterceptsof y = x* — 2x2 + 1 (see exercise 17).

4x
Find all vertical totes of y = .
1nda all vertica asympoeso y X+2
-2
Find all vertical totes of y = ——— <
1na all vertica asympoeso ]/ xz_x_z

In exercises 33-36, find or estimate all zeros of the given
function.

33. f(x) =x*=3x-10

35. f(x) =x>—3x2 +2

34. f(x) =x°+4x% +3x

36. f(x) =x*—-3x-2

In exercises 37 and 38, determine the number of solutions.

37.

38.

39.

40.

41.

42,

43.
44.

sinx = x°

Va2+1l=x*-1

A surveyor stands 50 ft from a telephone pole and measures
an angle of 34° to the top. How tall is the pole?

Find sin 0 given that 0 < 6 < 7 and cos 0 = %

Convert to fractional or root form: (a) 5-/2 (b) 372
2 3

— (b) 5.

Ve ¥

Rewrite In8 — 21n 2 as a single logarithm.

Convert to exponential form: (a)

Solve the equation for x: "% = 8.

In exercises 45 and 46, solve the equation for x.

45.

3¢ =8 46. 2In3x =5

In exercises 47 and 48, find f o g and g of, and identify their
respective domains.

47. f(x) =x%, glx)=+vx-1
48. f(x)=x%, glx) = x21—1

In exercises 49 and 50, identify functions f (x) and g(x) such that
(fog)(x) equals the given function.

49.

342 50. 1/sinx +2

In exercises 51 and 52, complete the square and explain how
to transform the graph of y = x? into the graph of the given
function.

51. f(x) =x®—4x+1

52. f(x) =x*+4x+6
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In exercises 53-56, determine whether the function is one-to-

one. If so, find its inverse.
53, ¥ —1 54, ¢ 55, 2 56. ¥ —2x+1

In exercises 57-60, graph the inverse without solving for the
inverse.

57. X +2x° -1 58. x3 +5x+2
59. V/x3 + 4x 60, ¢*+2

In exercises 61-64, evaluate the quantity using the unit circle.

62. cos™! <— o )
2
64. csc™1(-2)

61. sin'1
63. tan~'(-1)

In exercises 65-68, simplify the expression.
66. tan(cos™!(4/5))
68. cos~!(sin(—x/4))

65. sin(sec™!2)
67. sin”!(sin(37/4))

In exercises 69 and 70, find all solutions of the equation.

69. sin2x =1 70. cos3x = %

EXPLORATORY EXERCISES

1. Sketch a graph of any function y = f(x) that has an in-
verse. (Your choice.) Sketch the graph of the inverse func-
tiony = f~!(x). Then sketch the graph of y = g(x) = f(x + 2).
Sketch the graph of y = g71(x), and use the graph to deter-
mine a formula for g7!(x) in terms of £~} (x). Repeat this for
h(x) = f(x) + 3 and k(x) = f(x — 4) + 5.

2. Intennis, a serve must clear the net and then land inside of
a box drawn on the other side of the net. In this exercise,
you will explore the margin of error for successfully serving.

First, consider a straight serve (this essentially means a
serve hit infinitely hard) struck 9 ft above the ground. Call
the starting point (0, 9). The back of the service box is 60 ft
away, at (60, 0). The top of the net is 3 ft above the ground
and 39 ft from the server, at (39, 3). Find the service an-
gle 6 (i.e., the angle as measured from the horizontal) for
the triangle formed by the points (0, 9), (0, 0) and (60, 0).
Of course, most serves curve down due to gravity. Ignor-
ing air resistance, the path of the ball struck at angle 6 and
mxz — (tanO)x + 9. To hit
the back of the service line, you need y = 0 when x = 60.
Substitute in these values along with v = 120. Multiply by

cos? 0 and replace sin 6 with y/1 — cos? §. Replacing cos 8
with z gives you an algebraic equation in z. Numerically es-
timate z. Similarly, substitute x = 39 and y = 3 and find an
equation for w = cos §. Numerically estimate w. The margin

of error for the serve is given by cos™ z < 6 < cos™! w.

initial speed v ft/sis y = —

. Baseball players often say that an unusually fast pitch rises

or even hops up as it reaches the plate. One explana-
tion of this illusion involves the players” inability to track
the ball all the way to the plate. The player must compen-
sate by predicting where the ball will be when it reaches
the plate. Suppose the height of a pitch when it reaches
home plate is h = —(240/v)* + 6 ft for a pitch with velocity
v ft/s. (This equation takes into consideration gravity but
not air resistance.) Halfway to the plate, the height would
be h = —(120/v)? + 6 ft. Compare the halfway heights for
pitches with v = 132 and v = 139 (about 90 and 95 mi/h,
respectively). Would a batter be able to tell much differ-
ence between them? Now compare the heights at the plate.
Why might the batter think that the faster pitch hopped
up right at the plate? How many inches did the faster
pitch hop?
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