Subject PHYSICS Grade 9 Stream ADV Term 1 Total No of Pages 7

- ☑ Where necessary use the constant in the table below.
- ☑ Answer all questions on the paper.

$$g = 9.81 \, m/s^2$$

		100	# 11 11
CL	ject		HY
วนบ	lect		

SICS

Grade

Stream

9

ADV

Term

1 2019-2020 Total No of Pages

7

Question

Place a tick (\checkmark) inside the box to the left of the most appropriate answer for each of the following:

- 1- Newton provided an explanation for why objects fall he proposed that the objects fall because the object and Earth are attracted by a force. Which of the following represents what Newton said?
- ☐ A scientific model

A scientific hypothesis

A scientific theory

- A scientific law
- 2- A period of time is $(2.0 \times 10^{-4} s)$, which of the following is true for this period with prefixes?
 - $0.20 \ ms$

 $2.0 \mu s$

 \square 0.20 μs

- 2.0 ms
- 3- Depending on the figure, what is the measure shown on the meter? include the uncertainty.
 - \Box (3.6 \mp 0.2) A
 - \Box (3.4 \mp 0.2) A
 - \Box (3.6 \mp 0.1) A
 - \Box (3.4 \mp 0.1) A

4- Depending on the equation :

$$[y = (3.0 m/s) + (X \times 2.0 s)]$$

What is the name of the physical quantity represented by the X symbol and its unit?

the name of quantity X	the unit of quantity X
Length	m
Time	S
Acceleration	$m s^{-2}$
Velocity	$m s^{-1}$

- 5-Depending on the figure, what is the displacement for the runner after (6.0 s) from the beginning of his movement?
 - \Box +25 m
- \Box +15 m
- \Box -25 cm
- \Box -15 m

Sı	ubject PHYSICS Grade	9	Stream	ADV	Term	1 2019-2020 Total No of Pages 7
11-	The final position of a ball	motion	ı is given	from the	followin	
	The final position of a ban		+0.70 +			g equation
(Ph	ysical quantities in the equ	,				nits).
	nat are the initial position a					
	initial velocity		initial pos	ition		
	+2.0 m/s		+0.70	m		
	+3.0 m/s		+0.70	m		
	+2.0 m/s		+3.0	m		
	+3.0 m/s		+3.0	m		
12 -7	here are two balls in a gla	ss box	with no a	ir on the	ground a	as shown in the figure. If the
		er,whic	h of the fo	ollowing	is correct	t for the acceleration of the
two l	palls?					$m_2=200 \text{ g} m_1=400 \text{ g}$
	the acceleration for m_1 is	greater	than it is	for m ₂ .		
	the acceleration for m_2 is	greater	than it is	for m_1 .		glass box
	the acceleration for m ₂ an	d m ₁ is	equal.			1.0 m
	the acceleration for m ₁ eq	uals ha	lf of it is	for m ₂		earth's surface
13-]	n the figure, which of the	e forces	$\mathbf{F}_{1},\mathbf{F}_{2}$	\mathbf{F}_3) are f	field force	e? rope
			2 40			F ₁
	$\mathbf{F_1}$					ball (
	\mathbf{F}_{2}					rope \uparrow F_2
	\mathbf{F}_3					ball
	$\mathbf{F_1}$ and $\mathbf{F_2}$					F ₃
	he scale when the elevator					at is the reading recorded by m/s^2) downward?
	28 N			150 N		
	120 N			180 N		
	LAU IN		J	TOU IA		
15-V	Which of the following is t	rue for	an intera	ction pair	dependi	ng on Newton's third law?
	exerted in the same time		Па	re differe	ent in ma	gnitude
	in the same direction			xerted or	the sam	e object

Subject PHYSICS G	irade	9	Stream	ADV		Term	2019-2	2020 Total	No of Page:	s 7
2 nd Question	15						PA	RT2		50
The graph is showing for different weights Answer (16,17 16- What is the name of	s hangir , 18)	ng on its	free side	е.		1			6	
- Independent varia	able?	**********	**********	*******		th	2.0			
- Dependent variable	le?	**********		***********	******	leng	3.0			
17-What is the original	length	of the ru	bber bar	nd?		band	0.0			
18- How long does the roriginal length when				m the		the	0.0		2.0 3.0 reight (N)	
- The following tal inside her school Time(s)				itions a	nd tin		hen sl	120	ed to the	north
Position (m)	0	10	20	30	40		50	60	70	,
Answer (19,20,21) 19-Draw a position-tim motion in the school 20-Calculate the average using the position-temporary.	ge veloc	ity of M ph.	aryam							9

Physics -Mark -Scheme Grade **9** Advanced Term **1** -2019/2020 (1)

Ma	arks	J	Answer	Qu	estions			
15		2 2	A scientific theory	1				
	- *	2	0.20 ms	2				
	-	2	$(3.6 \mp 0.1) A$	3				
		2	Acceleration $m s^{-2}$	4				
		2	+15 m	5				
		2	+1.7 m/s	6				
		2	-160 m	7				
		2	the vehicle moved slower					
30	30	2	$+15 m/s^2$	9	1 St .			
		2	-22 m	10				
		2	+3.0 m/s $+0.70 m$	11				
		2	the acceleration for m_2 and m_1 is equal.	12				
		2	F ₃	13	3			
		2	120 N	14				
		2	exerted in the same time	15				
			Don't accept any other answers.					
		-1	the weight		2			
		1	the band length	10				
	6	2	6.0 cm	17				
		2	8.0 cm	18				
			1 the time axis					
			1 the position axis					
			2 draw the graph 60		** 34			
			(B) 50					
	4	4		19				
	-		ii.					
			uoijisod 20		_ nd			
15		-			2 nd .			
	, i	4 -	0 20 40 60 80 100 120 140 160					
			time (s)					
		1	$v_{avg} = \frac{\Delta x}{\Delta t}$					
	, 0		$v_{avg} = \frac{1}{\Delta t}$ $70 - 10$					
	3	1	$v_{avg} = \frac{70 - 10}{140 - 20}$	20				
4	P+20+		$v_{avg} = +0.50 \text{ m/s}$					
		1						
			-70					

PHYSICS

Physics -Mark -Scheme Grade 9 Advanced Term 1 -2019/2020 (1)

7.4	a ulva	T	Answer	Qu	estions	
IVI	arks .		(8.0 s to 20 s)	22		
		1	$a = \frac{\Delta v}{\Delta t}$ $4.0 - 8.0$	23		
		3	$a = \frac{}{4.0}$			
	14	1	$a = 1.0 \text{ m/s}^2$		a *	
		3 ·	the magnitude of displacement is equal to the area under the graph $= \frac{1}{2}(8.0 \times 8.0) + (12 \times 8.0) + \frac{1}{2}(8.0 \times 8.0)$			
20	(1)		$= \frac{2}{2}$ = 156 m			
		2	slope = $\frac{(0.40 - 0.20)m/s^2}{(8.0 - 4.0)N}$			
	6	2	$= 0.050 \frac{\text{m/s}^2}{N}$	25		
		2	$\frac{1}{mass}$ or $\frac{1}{m}$			
		2	$a = \frac{F}{m}$ 60			
			$a = \frac{60}{24}$			
	9	1	$a = 2.5 \text{ m/s}^2$	26		
		2	$\mathbf{v}_{\mathbf{f}}^2 = \mathbf{v}_{\mathbf{i}}^2 + 2 \mathbf{a} \Delta \mathbf{x}$			
1 2		2	$v_f^2 = 0 + 2 \times 2.5 \times 10$			
15		1	$v_f = 7.1 \mathrm{m/s}$		1	
		2	$\mathbf{F_{net}} = \mathbf{m} \cdot \mathbf{a}$			
		3	$F_{\text{net}} = (4.0 + 2.0) \times 1.5$	27		
	6	1	$F_{\text{net}} = 9.0 \text{ N}$		T	
			The end			
	744915750		The error in the physical equation used to solve the question does not give any marks to the solution 1 mark for each incorrect compensation is deducted during the resolution of the question	In	structio	
	80		The other correct answers will be accepted after approval by directorate			
		•	The exam consists of two parts each with a separate degree			
	37 CH - U V A	COVOVA	omy the mist question			
			The questions 2,3 and 4 Part Two			